68t Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0

ISSN: 2673-5571

doi:10.18429/JACol-HB2023-TUA2I2

COMMUNITY MODELING TOOLS FOR
HIGH-BRIGHTNESS BEAM PHYSICS

C. Mitchell * ¥, A. Huebl, J. Qiang, R. Lehe, M. Garten, R. Sandberg, J-L. Vay
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

Pushing accelerator technology toward operation with
higher intensity hadron beams is critical to meet the needs
of future colliders, spallation neutron sources, and neutrino
sources. To understand the dynamics of such beams requires
a community effort with a comprehensive approach to
modeling, from the source to the end of the beam lifetime.
One needs efficient numerical models with high spatial
resolution and particle statistics, insensitivity to numerical
noise, and the ability to resolve low-density halo and particle
loss. To meet these challenges, LBNL and collaborators
have seeded an open ecosystem of codes, the Beam pLasma
& Accelerator Simulation Toolkit (BLAST), that can be
combined with each other and with machine learning
frameworks to enable integrated start-to-end simulation of
accelerator beamlines for accelerator design. Examples of
BLAST tools include the PIC codes WarpX and ImpactX.
These codes feature GPU acceleration and mesh-refinement,
and have openPMD standardized data I/O and a Python
interface. We describe these tools and the advantages that
open community standards provide to inform the modeling
and operation of future high-brightness accelerators.

INTRODUCTION

The modeling of charged-particle beams plays a critical
role in accelerator design and operation. The needs of high-
intensity and high-brightness hadron facilities pose a special
challenge to accelerator beam dynamics modeling, due in
part to the broad range of physics effects at interplay. For
example, high spatial resolution and good particle statistics
are required to model and predict low-density beam halo
formation [1-3], to understand intensity-dependent beam
loss mechanisms [4], to understand space charge induced
emittance growth [5], and to model and mitigate collective
instabilities [6-8]. For storage rings and colliders, the
modeling of self-consistent collective effects in beams for
large turn numbers must address the challenges of simulation
artifacts (noise) and long computation times.

* This work was supported by the Director, Office of Science of the U.S.
Department of Energy under Contracts No. DE-AC02-05CH11231 and
DE-AC02-07CH11359. This material is based upon work supported by
the CAMPA collaboration, a project of the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research and
Office of High Energy Physics, Scientific Discovery through Advanced
Computing (SciDAC) program. This research used resources of the
National Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 using
NERSC award HEP-ERCAP0023719.

T ChadMitchell @1bl.gov

Beam Dynamics in Rings

To address these challenges effectively, a community
approach is required. In addition to sharing expertise
regarding physics and algorithm development, collaborative
code development based on shared standards and common
code interfaces can enhance existing workflows. For
example, in start-to-end modeling of complex multi-stage
accelerator facilities, one typically must chain multiple
simulation codes, involving different numerical models,
input and output formats, and user expertise. In addition,
one needs reliable methods to benchmark, exchange data,
and compare results from multiple simulation codes.

To model intense beams with improved fidelity over the
entire beam lifetime with reasonable computing times, to
enable large ensembles of simulation runs for optimization
and for training of machine learning (ML) models, and to
prepare for future Exascale computing systems, software
must be developed and/or modernized to take advantage

of state-of-the-art computer hardware, including GPUs.

Examples of collaborative multi-institute code development
efforts include the Collaboration for Advanced Modeling of
Particle Accelerators (CAMPA) [9], the Exascale Computing
project [10, 11], and HEP SciDAC-5 [12].

GOALS OF A COMMUNITY ECOSYSTEM

One primary community goal is to understand and exploit
the physics of high intensity beams for improved accelerator
design, using full-physics 6-D computer simulations of
entire accelerator systems that incorporate all components
(including any conventional and advanced concepts sections)
and all pertinent physical effects and that execute quickly

and reliably (“end-to-end virtual accelerators”, EVAs) [13].

Furthermore, these EVAs should be able to leverage modern
computing infrastructure such as HPC clusters and GPU
computing and fully integrate AI/ML tools to maximize
efficiency for practical applications.

One approach to this goal is through an ecosystem
of interoperable modeling tools with various levels of
integration and fidelity. Figure 1 illustrates a proposed
example of such an ecosystem [14]. Individual components
are represented as boxes with dependencies building on
top of each other. The fundamental building blocks are
implementations of solvers/numerical schemes, efficient
I/0O, parallelization, and a performance portability layer
(Math & Computer Science libraries). Depending on
this functionality, domain-specific libraries for RF, beam,
or plasma modeling can be implemented (Accelerator
& Beam Toolkits) that then act as toolkits to be
combined into concrete applications. = Compatibility,
development productivity, usage, and quality assurance

TUA212
81

©=2d Content from this work may be used under the terms of the CC-BY-4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

&= Content from this work may be used under the terms of the CC-BY-4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

68t Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0

ISSN: 2673-5571

doi:10.18429/JACol-HB2023-TUA2I2

Modular Community Ecosystem — open community policies, open standards, open testing/benchmarking

POPAS Framework for Grand Challenges: End-to-End Virtual Accelerators, Design & Optimization

BLAST: WarpX, HiPACE++, ImpactX

PICKSC: Osiris, QuickPIC, QPAD

Synergia

Plasma accelerator

Accelerator &
Beam Toolkits

Beam dynamics

Magnets Beam Analysis

&
=
m
£
wv
&
o
w
=

:
s
:
=

Standardized I/O

Math & Computer
Science Libraries

GPU-acceleration, AMR, parallelization, Poisson solvers, surface methods, particle pushers, 1/0

Figure 1: Diagram of a possible envisioned ecosystem for particle beam and accelerator modeling. Vertical components are
software dependencies, which in most cases are software libraries. Open policies, standards, standardized I/O, and common
workflows steer and connect the ecosystem. Reproduced from Ref. [14].

can be coordinated with standardization (e.g., for I/O
and data layouts) as well as common workflows (e.g.,
shared continuous benchmarks and practices). The top
level represents an overarching framework for optimization
workflows (e.g., CAMPA’s Platform for Optimization of
Particle Accelerators at Scale aka POPAS) that combine
application components as needed for the study of complex
integrated research questions.

The Role of Standards

The goals just described are often challenging to
implement in practice because of differing conventions
among beam dynamics codes, variations in file format, and
differences in implementation details. Standardization is
a way to solve such incompatibilities and greatly simplify
vertical software integration [15]. Examples of particle
accelerator community standards for data exchange and
common inputs include the Open Standard for Particle-Mesh
Data (openPMD) [16] and the Particle-In-Cell Modeling
Interface (PICMI) [17]. Discussions are ongoing regarding
an Accelerator Modeling Interface (AMI) standard for lattice
description. In the community ecosystem of Fig. 1, these
standards are implemented in a unified Python application
interface layer and will be leveraged for activities concerning
unified simulation input and control.

openPMD is a metadata standard for scalable I/O and
exchange of particle and mesh-based data, implemented
on popular scientific file formats such as HDF5 and
ADIOS. The openPMD standard is developed as an
open community project and released in versions (current
version 1.1.0). Included are data-processing [18] and
visualization frameworks such as openPMD-viewer [19],
and ParaView/VislIt.

PICMI & AMI address the challenge of a unified
simulation design by defining a Particle-In-Cell Modeling
Interface (PICMI) standard and an Accelerator Modeling
Interface (AMI) standard (built as an extension of PICMI for
accelerators) that establish conventions for the naming and
structuring of input files for, respectively, PIC simulations at
large and PIC-based accelerator simulations. The goal of the
standards is to propose a set (or dictionary) of standardized

TUA2I2
82

names and definitions that can be used in input scripts, with
as few changes as possible between codes.

BEAM, PLASMA & ACCELERATOR
SIMULATION TOOLKIT

One example of such an integrated ecosystem approach
is given by the Beam, Plasma & Accelerator Simulation
Toolkit (BLAST [20]), a suite of open source particle
accelerator modeling codes. This suite includes the particle-
in-cell codes WarpX and ImpactX, codes for modeling
beam-beam and electron cloud effects (BeamBeam3D,
POSINST) and codes for modeling plasmas and advanced
accelerator concepts (FBPIC, HiPACE++, Wake-T).
Originally developed under the name Berkeley Lab
Accelerator Simulation Toolkit, BLAST was renamed in
2021 to reflect international contributions from LIDYL
(CEA, France), SLAC (USA), LLNL (USA), DESY
(Germany), UHH (Germany), HZDR (Germany), Radiasoft
(USA), CERN (Switzerland) and more; BLAST development
involves deep collaboration among physicists, applied
mathematicians and computer scientists.

With the emergence of the first Exascale Computing
supercomputers, modeling codes that were originally
designed for parallel CPU-powered machines need to
undergo a fundamental modernization effort. This became
necessary, as compute nodes are now equipped with
accelerator hardware such as GPUs (and potentially FPGAs
in the future). Selected as application for the Department
of Energy Exascale Computing Project, the BLAST code
WARP [21,22] underwent a complete rewrite from Fortran
to modern C++ resulting in its successor WarpX [23].
Building on the momentum of this transition to form a
more cohesive Accelerator Toolkit, the specialized plasma
wakefield acceleration code HiPACE++ [24] and beam
dynamics code ImpactX [25,26] have recently undergone
similar modernization.

Software Design

A central goal of the modernization of BLAST is
modularity for efficient code reuse and tight integration
for coupling, i.e., in hybrid particle accelerators with

Beam Dynamics in Rings

68" Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams
ISSN: 2673-5571

ISBN: 978-3-95450-253-0

User
Interfaces |_Python Bindings & Particle-In-Cell Modeling Interface (PICMI) |

Libraries pyAMReX ABLASTR PICSAR
common PIC components QED modules

AMReX

openPMD I/0,
streaming, in situ:
ADIOS/HDF5

Math
LinAlg., FFT

Computer

Science Containers, Communication,

Portability, Utilities

vendor [MPI multnode comm. | | CUDA, OpenMP, DPC++, HIP

Figure 2: Design of the BLAST software stack. Modularization
enables code sharing and tight coupling.

conventional and advanced (plasma) elements. Figure 2
shows the design of BLAST’s software dependencies, with
upper components depending and sharing lower blocks in the
schema. Shared code, common application programming
interfaces (APIs) and data standards ensure composability
and connection to the AI/ML and data science ecosystems.
Performance-critical routines are implemented and reused
in modern C++, using a single-source approach to program
both CPUs and GPUs via a performance-portability layer in
AMReX [27]. The newly introduced ABLASTR library collects
common particle-in-cell (PIC) routines.

Python high-level interfaces are used for user efficiency
and to provide standardized APIs to data science and
AI/ML frameworks, which are mostly driven from the same
language. Documentation and examples are developed in
lock-step with documentation and published on https:
//impactx.readthedocs.io. Examples and test cases
are continuously run against expected results.

All development is carried out in the open using open
source licenses, contributable code repositories, code
reviews, regular releases and change logs [26]. The
community reports open “issues” for feature requests,
bug reports, etc. Installation for users and developers is
supported by package managers and HPC modules.

IMPACTX

The code IMPACT-Z [28] is widely known in the
accelerator modeling community. It has been applied to
studies of halo formation and coupling resonance in high
intensity beams, studies of the microbunching instability
in high brightness electron linacs, beam dynamics in the
SNS linac, the JARPC linac, the RIA driver linac, the
CERN superconducting linac, the LEDA halo experiment,
the Proton Synchrotron at CERN, and others. The code,
which is written in Fortran90 with MPI, runs on both single-
processor and multi-processor systems [29].

ImpactX [25,26] is a GPU-capable C++ successor to
the code IMPACT-Z [29], built on the AMReX software
framework [27], for modeling relativistic charged particle
beams in linacs or rings. Leveraging expertise and
models in IMPACT-Z [28] and MaryLie [30, 31], this
new simulation code is built from the ground up to
take GPU-accelerated computing, mesh-refinement for

Beam Dynamics in Rings

HB2023, Geneva, Switzerland JACoW Publishing
doi:10.18429/JACoW-HB2023-TUA2I2

envelope egs.
1.8

rms beam siz
o N

-
(5]

Figure 3: Evolution of the rms beam size o = o, =
yo, over a single period in the focusing channel used for
the Kurth beam distribution test. (Line) RMS envelope
equations. (Points) Values from ImpactX. The blue rectangle
denotes the region of nonzero focusing.

space-charge effects, load balancing, and coupling AI/ML
frameworks into consideration. ImpactX design relies

on open community standards for I/O and data interfaces.

Generalized and reused from WarpX via the ABLASTR library
are GPU-accelerated routines for charge deposition, beam
statistics, Poisson solve, profiling, warning logging, Unix

signal handling, build/installation logic, among others.

ImpactX can be executed in two ways: a traditional

executable reading a text input file or driven from Python.

For an example of the latter usage, see [25].

Model Assumptions

Similar to IMPACT-Z, tracking is performed with respect
to the path length variable s, and space charge is included
using a second order operator splitting [28]. All tracking
methods are symplectic by design, and maps are used where
possible for efficient particle pushing. Maps applied during
tracking for most thick elements are accurate through linear
order (with respect to the reference orbit), with support for
soft-edge elements. Exact nonlinear maps are available for
some elements (drift, ideal sector bend, regions of uniform
field). Symplectic integrators for non-ideal, nonlinear
elements are under development.

The code supports 3D space charge for bunched beams.

As in IMPACT-Z, the space charge fields are treated as
electrostatic in the bunch rest frame. In particular, no
retardation or radiation effects are included. Unlike
IMPACT-Z, the 3D space-charge fields are computed with
an iterative Multi-Level Multi-Grid (MLMG) Poisson

x [m]
© & o

z[m]
Figure 4: The reference orbit in the IOTA lattice benchmark,

as produced by ImpactX, showing the storage ring floorplan.

TUA2I2
83

©=2d Content from this work may be used under the terms of the CC-BY-4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

&= Content from this work may be used under the terms of the CC-BY-4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

68t Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0

ISSN: 2673-5571

doi:10.18429/JACol-HB2023-TUA2I2

u

|)

—

iz
= AN 4
\ N \N ‘
%E /\)\\/ u\/\ I Y Ve g, \'/\/\
0
0
0 4 8 12 16 20 24 28 32 36 40

distance s [m]

Figure 5: Evolution of the rms beam size in the IOTA lattice benchmark. Thin dark lines: ImpactX, light bold lines:

IMPACT-Z results.

solver [27], providing new support for adaptive mesh
refinement. This is expected to allow users to resolve high
spatial density gradients within a high-intensity beam (such
as sharp beam edges) at reduced computational cost.

Benchmarking and Validation

The code ImpactX is continuously benchmarked (after
every code change) against a suite of >20 test problems,
designed to validate each feature of the code. The goal of
these tests is to cover all implemented functionality and
verify that computed results are within expected precision,
independently of the compute hardware used. Following
such test-driven development eases the entry burden for
accelerator scientists adding new functionality to the project,
since automated testing will inform them if unexpected
side-effects of changed code would change benchmarked
physics results. Tests and examples also add a solid body
of documented examples to the project. Detailed validation
of the code using standard space charge benchmark tests is
described elsewhere in these proceedings [32].

NUMERICAL EXAMPLES

Kurth beam in a periodic focusing channel

This benchmark of high intensity space charge is
described in detail in [32]. The test case consists of a 10 nC
proton bunch with a kinetic energy of 2 GeV propagating in
a periodic channel comprised of alternating drift spaces and
constant linear focusing sections (k = 0.7/m). The bunch
has a 6D distribution of Kurth type [33], providing an exact,
self-consistent solution of the Vlasov-Poisson equations with
3D space charge. The bunch and the external focusing are
radially symmetric in the bunch rest frame. The bunch
has an rms unnormalized emittance of 1 um in each plane,
yielding a (depressed) phase advance per period of 74°. Fig.
3 illustrates the matched beam size over a single period,
comparing the values from ImpactX against the rms envelope
equations, showing good agreement. See [32] for additional
details.

Fermilab IOTA Storage Ring

This benchmark is described in [25], and is reproduced
here for illustration. The test case is a model of the
bare (linear) lattice of the Fermilab IOTA storage ring (v.

TUA212
84

8.4) [34], with optics configured for operation with a
2.5 MeV proton beam. Anrms-matched proton beam with an
unnormalized emittance of 4.5 um propagates over a single
turn. The second moments of the particle distribution after
a single turn are checked to coincide with the initial second
moments of the particle distribution, to within the level
expected due to numerical particle noise.

In Fig. 4, the reference orbit indicating the global beam
position within the ring is shown. Figure 5 shows the rms
beam size evolution as a function of path length over a single
turn. The thin dark lines are from ImpactX, while the light
bold lines in the background are from IMPACT-Z. The results
of the two codes are in excellent agreement.

CONCLUSION

ImpactX is under active development, and several
capabilities remain to be ported from IMPACT-Z. Future
plans include detailed code performance and scaling
studies, detailed exploration of benchmark tests with mesh
refinement, the implementation in ImpactX of 2D and/or
2.5D space charge models appropriate for long or unbunched
beams, and the implementation of additional collective
effects (including resistive wall wakefields and CSR models).

REFERENCES

[1] R. L. Gluckstern, “Analytic Model for Halo Formation in
High Current Ion Linacs”, Phys. Rev. Lett., vol. 73, p. 1247,
1994. doi:10.1103/PhysRevLlett.73.1247

[2] J. Qiang and R. D. Ryne, “Beam halo studies using a three-
dimensional particle-core model”, Phys. Rev. Spec. Top.
Accel. Beams, vol. 3, p. 064201, 2000.

doi:10.1103/PhysRevSTAB.3.064201
(3]

Dong-O Jeon, “Evidence of a halo formation mechanism in
the spallation neutron source linac”, Phys. Rev. Spec. Top.
Accel. Beams, vol. 16, p. 040103, 2013.

doi:10.1103/PhysRevSTAB.16.040103

J. Eldred, V. Lebedev, K. Seiya, and V. Shiltsev, “Beam
intensity effects in Fermilab Booster synchrotron”, Phys. Rev.
Accel. Beams, vol. 24, 044001 (2021).
doi:10.1103/PhysRevAccelBeams.24.044001

(4]

[5] T. Yasui et al, “Transverse emittance growth caused by space-
charge-induced resonance”, Phys. Rev. Accel. Beams, vol. 23,
061001 (2020),

doi:10.1103/PhysRevAccelBeams.23.061001

Beam Dynamics in Rings

68t Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0

(6]

(7]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]
[21]

J. Qiang, “Three-dimensional envelope instability in periodic
focusing channels”, Phys. Rev. Accel. Beams, vol. 21,
p. 034201, 2018.
doi:10.1103/PhysRevAccelBeams.21.034201

T. Zolkin, A. Burov, and B. Pandey, “Transverse mode-
coupling instability and space charge”, Phys. Rev. Accel.
Beams, vol. 21, p. 104201 (2018).
doi:10.1103/PhysRevAccelBeams.21.104201

E. Métral, “General mitigation techniques for coherent beam
instabilities in particle accelerators”, Eur. Phys. J. Plus,
vol. 137, p. 47, 2022.
doi:10.1140/epjp/s13360-021-02264-4

Consortium for Advanced Modeling of Particle Accelerators,
https://campa.lbl.gov/about-campa/

Exascale computing project,
https://www.exascaleproject.org/

L. Fedeli, A. Huebl, et al., “Pushing the frontier in the design
of laser-based electron accelerators with groundbreaking
mesh-refined particle-in-cell simulations on exascale-class
supercomputers”, in Proc. SC’22, Los Alamitos, CA, USA,
Nov. 2022. doi:10.1109/SC41404.2022.00008

Scientific Discovery through Advanced Computing,
https://www.scidac.gov/about.html

“General accelerator R & D program, accelerator and beam
physics roadmap”, DOE Accelerator and Beam Physics

Roadmap Workshop, Sep. 2022, https://science.osti.

gov/hep/Community-Resources

J.-L. Vay, “Collaboration for advanced modeling of particle
accelerators”, 2023 SciDAC Principal Investigator (PI)
Meeting, Rockville, MD, USA, Sep. 2023.

D. Sagan, M. Bertz et al, “Simulations of future
particle accelerators: issues and mitigations”, J. Instrum.,
16(10):T10002, oct 2021.

A. Huebl et al, “openPMD 1.0.0: A meta data standard for
particle and mesh based data”, 2015.
doi:10.5281/zenodo.33624

PICMI: Standard input format for particle-in-cell codes,
https://picmi-standard.github.io

A. Huebl et al, “openPMD-api: C++ & Python API for

scientific I/O with openPMD”, 2018, https://github.

com/openPMD/openPMD-api,

10.14278/rodare.27

R. Lehe, A. Huebl, S. Jalas, et al, “openPMD-viewer: Python
visualization tools for openPMD files”, 2016, https://
github.com/openPMD/openPMD-viewer

BLAST code suite, https://blast.1lbl.gov

J.-L. Vay, D. P. Grote, R. H. Cohen, and A. Friedman, “Novel
methods in the particle-in-cell accelerator code-framework
warp”, Comput. Sci. & Disc., vol. 5, p. 014019, 2012.
doi:10.1088/1749-4699/5/1/014019

Beam Dynamics in Rings

ISSN: 2673-5571

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

doi:10.18429/JACol-HB2023-TUA2I2

A. Friedman, et al., “Computational methods in the warp
code framework for kinetic simulations of particle beams and
plasmas”, IEEE Trans. Plasma Sci., vol. 42, pp. 1321-1334,
2014.

doi:10.1109/TPS.2014.2308546

A. Myers et al, “Porting WarpX to GPU-accelerated
platforms”, J. Parallel Comput., vol. 108, p. 102833, 2021.
doi:10.1016/j.parco.2021.102833

S. Diederichs et al, “HiPACE++: A portable, 3D quasi-static
particle-in-cell code”, Comput. Phys. Commun., vol. 278,
p- 108421, 2022.

doi:10.1016/j.cpc.2022.108421

A. Huebl et al, “Next generation computational tools for the
modeling and design of particle accelerators at exascale”, in
Proc. 2022 North American Particle Acc. Conf. (NAPAC’22),
Albuquerque, NM, USA, Aug. 2022, pp. 302-306.
doi:10.18429/]ACoW-NAPAC2022-TUYE2

A. Huebl, C. E. Mitchell, R. Lehe, J. Qiang, et al, “ECP-
WarpX/impactx: 22.08”, 2022.
doi:10.5281/zenodo.6954923

W. Zhang et al, “MReX: a framework for block-structured
adaptive mesh refinement”A, J. Open Source Softw., vol. 4,
no. 37, p. 1370, 2019.

doi:10.21105/joss.01370

J. Qiang, R. Ryne, S. Habib, and V. Decyk, “An object-
oriented parallel particle-in-cell code for beam dynamics
simulation in linear accelerators”, J. Comput. Phys., vol. 163,
pp. 434-451, 2000.

doi:10.1006/jcph.2000.6570

IMPACT-Z github repository,
https://github.com/impact-1bl/IMPACT-Z

A. Dragt et al, MARYLIE 3.0 user’s manual, Dept. of Physics
and Astronomy, University of Maryland, College Park, MD,
USA.

https://www.physics.umd.edu/dsat/

R. D. Ryne et al., “Recent progress on the MaryLie/IMPACT
beam dynamics code”, in Proc. ICAP’06, Chamonix, France,
Oct. 2006, pp. 157-159.

C. Mitchell et al, “ImpactX modeling of benchmark tests
for space charge validation”, presented at HB’23, Geneva,
Switzerland, Oct. 2023, paper THBP16, these proceedings.

C.E. Mitchell, K. Hwang, and R.D. Ryne, “Kurth Vlasov-
Poisson solution for a beam in the presence of time-dependent
isotropic focusing”, in Proc. IPAC’21, Campinas, SP, Brazil,
May 2021, pp. 3213-3216.
doi:10.18429/JACoW-IPAC2021-WEPAB248

S. Antipov et al, “IOTA (Integrable Optics Test Accelerator):
facility and experimental beam physics program”, J. Instrum.,
vol. 12, p. T03002, 2017.
doi:10.1088/1748-0221/12/03/T03002

TUA2I2
85

©=2d Content from this work may be used under the terms of the CC-BY-4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

