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Abstract
Beam instabilities driven by broad- and narrowband

impedance sources have been treated separately so far. In
this contribution, we present the generalised beam stabil-
ity analysis based on the concept of van Kampen modes.
In the presence of broadband impedance, the loss of Lan-
dau damping (LLD) in the longitudinal plane can occur
above a certain single-bunch intensity. For significantly
higher intensities, the broad-band impedance can drive vi-
olent radial or azimuthal mode-coupling instabilities. We
have shown that the synchrotron frequency spread due to RF
field non-linearity, counter-intuitively, reduces the single-
bunch instability threshold. We have also demonstrated that
a multi-bunch instability driven by a narrow-band impedance
source can be significantly affected by LLD when adding
broad-band impedance. These findings are supported by
macroparticle simulations and beam observations in the Su-
per Proton Synchrotron and the Large Hadron Collider at
CERN.

INTRODUCTION
Interaction of particle beams with the accelerator environ-

ment (described in terms of beam-coupling impedance) can
lead to beam quality degradation and particle losses. Accel-
erator performance can be limited by single- or multi-bunch
instabilities in the longitudinal plane considered here. Their
mechanisms were studied with different approaches [1–24].
Another consequence of beam-impedance interaction could
be undamped bunch oscillations observed in different accel-
erators (Tevatron [25], RHIC [26], SPS [27], and LHC [28]).
Usually, they are attributed to the loss of Landau damping
(LLD) [1, 2, 4, 6, 7, 29–35], but an alternative theory also
exists (soliton solutions of nonlinear equations [26]).

Synchrotron particle oscillations can be described as van
Kampen modes [36, 37], which were introduced to acceler-
ator physics in [7]. They represent incoherent synchrotron
oscillations as well as undamped or even unstable coherent
modes emerged above a certain intensity threshold. The
first set of equations to evaluate the stability of bunched
beams was proposed in [1]. In general, it has to be solved
numerically for a specific stationary longitudinal particle
distribution function ℱ and impedance 𝑍. Under certain
assumptions, however, the Lebedev equation [1] allows us
to derive the analytical expression for thresholds of coupled-
bunch instability (CBI) [10, 38], LLD [35], and generalised
multi-bunch instability [39, 40].

A method of solving the linearized Vlasov equation nu-
merically was proposed in [13]. It requires the special ansatz
of the perturbed distribution function to convert the Sacherer
∗ ivan.karpov@cern.ch

equation [3] into an eigenvalue problem. This method was
originally used for the analysis of single-bunch instabili-
ties in the presence of the potential-well distortion (PWD)
revealing a new mechanism of radial mode-coupling insta-
bility [13]. Later it was applied to LLD studies [33, 34].

This contribution summarises recent works on LLD [35],
single-bunch instabilities in the CERN Super Proton Syn-
chrotron (SPS) [41], and the impact of LLD on multi-bunch
beam stability [39, 40].

LOSS OF LANDAU DAMPING
Landau damping of an infinitesimally small perturbation

can be understood as the phase mixing of van Kampen
modes [7, 33]. Interacting with accelerator impedance, their
frequencies are modified as bunch intensity changes. Above
a certain threshold, a mode leaves the band of incoherent
synchrotron frequencies becoming an undamped coherent
mode. This intensity corresponds to the LLD threshold,
which is discussed in the following subsection.

Threshold of Loss of Landau Damping
We considered a bunch of particles in a stationary single-

RF bucket and dominating inductive impedance above transi-
tion energy 𝜂Im𝑍/𝑘 > 0 (or space charge below transition).
The LLD threshold for the dipole mode (𝑚 = 1) corresponds
to a bunch intensity when the coherent frequency, Ω, equals
the maximum incoherent frequency of the bunch. According
to [35] the LLD threshold in terms of the number of particles
in the bunch, 𝑁𝑝, is given by

𝑁LLD = 𝑉0
𝑞ℎ𝜔0

[
∞
∑

𝑘=−∞
𝐺𝑘𝑘(Ω)𝑍𝑘(Ω)

𝑘 ]
−1

, (1)

where 𝑉0 is the RF voltage amplitude, 𝑞 the electrical charge
of the particles, ℎ the harmonic number, 𝑓0 = 𝜔0/2𝜋 the
revolution frequency, 𝐺𝑘𝑘 the elements of the beam transfer
matrix [42], and 𝑍𝑘(Ω) = 𝑍(𝑘𝜔0 + Ω) the impedance at
frequency 𝑘𝜔0 + Ω with 𝑘 = ±1, ±2, ...

We analysed the binomial family of the stationary distri-
bution function,

ℱ(ℰ) ∝ (1 − ℰ/ℰmax)𝜇 , (2)

with 𝜇 defining the bunch shape and ℰ being the energy
of the synchrotron oscillations. The elements 𝐺𝑘𝑘 at the
LLD threshold can be computed analytically by deploying
a short bunch approximation (half bunch length in radians
𝜙max ≪ 𝜋):

𝐺𝑘𝑘 ≈ −𝑖16𝜇(𝜇 + 1)
𝜋𝜙4

max
[1 − 1𝐹2 (1

2 ; 2, 𝜇; −𝑦2)] . (3)
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Table 1: The accelerator and RF parameters of the LHC at
injection energy and of the SPS at extraction energy [43].

Parameter Unit LHC SPS

Circumference, 𝐶 m 26658.86 6911.55
Harmonic number, ℎ 35640 4620
Transition gamma, 𝛾tr 55.76 17.95
RF frequency, 𝑓RF MHz 400.79 200.39
Beam energy, 𝐸0 TeV 0.45 0.45
RF voltage, 𝑉0 MV 6 7.2

Here 𝑝𝐹𝑞(𝑎1, .., 𝑎𝑝; 𝑏1, ..., 𝑏𝑞; 𝑧) is the generalised Hyperge-
ometric function with 𝑦 = 𝑘𝜙max/ℎ. Since

∣
∞
∑

𝑘=−∞
𝐺𝑘𝑘∣ → ∞,

the LLD threshold vanishes for reactive impedance, 𝑍𝑘/𝑘 =
𝑖Im𝑍/𝑘 = const, spanning to infinite frequency. The finite
LLD threshold requires truncation of the sum at 𝑘max and
then one obtains

𝑁LLD = 𝑉0𝜋𝜙5
max

32𝑞ℎ2𝜔0𝜇(𝜇 + 1)𝜒(𝑘max𝜙max/ℎ, 𝜇)Im𝑍/𝑘
,

(4)
where we introduced the function

𝜒(𝑦, 𝜇) = 𝑦 [1 − 2𝐹3 (1
2 , 1

2 ; 3
2 , 2, 𝜇; −𝑦2)] . (5)

For 𝜇 = 1/2 and 𝑘max𝜙max/ℎ ≈ 3.3, we reproduce LLD
threshold according to the Sacherer formalism [23]

𝑁𝑆
LLD = 𝑉0𝜙5

max
18𝑞ℎ2𝜔0 Im𝑍/𝑘

. (6)

This means that for a given bunch length 𝜏full = 2𝜙max/𝜔RF
the widely used threshold in Eq. (6) is only accurate for
the special choice of the cut-off frequency 𝑓𝑐 = 𝑘max𝑓0 ≈
1/𝜏full. Since the generalised hypergeometric function 2𝐹3
approaches zero for 𝑦 → ∞, the LLD threshold for bunches
with 𝜏full ≫ 1/𝑓𝑐 is simplified to

𝑁LLD ≈ 𝑉0𝜋𝜙4
max

32𝑞ℎ𝜔0𝜇(𝜇 + 1)𝑘maxIm𝑍/𝑘 . (7)

It becomes inversely proportional to the cut-off frequency,
and the fifth power in the dependence on the bunch length is
replaced by the fourth.

The analytical predictions were confirmed by solving the
Lebedev matrix equation semi-analytically as well as us-
ing the Oide-Yokoya method [13], also showing that both
numerical methods agree (Fig. 1). As expected, there is
some discrepancy for larger bunch lengths since the analytic
threshold was derived by deploying the short-bunch approx-
imation. The dependence on the cut-off frequency shown
in Fig. 2 confirms the vanishing of the LLD threshold for
𝑓𝑐 → ∞ [35].
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Figure 1: LLD intensity threshold as a function of the full
bunch length 𝜏full calculated using the Lebedev (L) equa-
tion and the Oide-Yokoya (O-Y) method for different cut-off
frequencies, 𝑓𝑐, of the inductive impedance. The analytic
predictions from Eq. (4) are plotted as solid lines. The LHC
parameters are according to Table 1, Im𝑍/𝑘 = 0.07 Ohm,
and 𝜇 = 2.
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Figure 2: LLD intensity threshold in the logarithmic scale
as a function of the cut-off frequency, 𝑓𝑐, of the inductive
impedance (multiplied by the full bunch length 𝜏full) for
two different values of 𝜏full. The analytic predictions from
Eq. (4) are shown as solid lines and the results of semi-
analytic calculations using MELODY as squares. Parameters
as for Fig. 1.

Effective Impedance
In reality, the impedance could be a complicated function

of frequency as it is, for example, the case for the SPS [44,
45]. The form of the LLD threshold in Eq. (1) suggests the
definition of the effective inductive impedance

(Im𝑍/𝑘)eff =
𝑘eff

∑
𝑘=−𝑘eff

𝐺𝑘𝑘Im (𝑍𝑘/𝑘) /
𝑘eff

∑
𝑘=−𝑘eff

𝐺𝑘𝑘. (8)
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Figure 3: Example of the residual oscillation amplitudes
normalised to the initial kick above the LLD threshold ver-
sus bunch intensity for different resonator frequencies 𝑓𝑟
calculated with MELODY. Dashed vertical lines indicate
the corresponding LLD thresholds.

The effective cut-off frequency 𝑘eff is chosen such that it max-
imises the cumulative sum in the nominator in Eq. (8) [46].
Thus, the LLD threshold for an arbitrary impedance model
can be evaluated by Eqs. (4) or (7) with substitution

(Im𝑍/𝑘)eff → Im𝑍/𝑘 and 𝑘eff → 𝑘max. (9)

This formula was verified for the full SPS impedance as well
as for the case of a simple resonator impedance model

𝑍(𝜔) = 𝑅
1 + 𝑖𝑄 (𝜔/𝜔𝑟 − 𝜔𝑟/𝜔) (10)

with a shunt impedance 𝑅, quality factor 𝑄, and resonant
frequency 𝜔𝑟 = 2𝜋𝑓𝑟.

Impact on Beam and Comparisons with Measure-
ments

A beam injected with phase and/or energy error, after a
partial initial filamentation, might continue to oscillate if
Landau damping is lost. As this initial perturbation is equiv-
alent to a rigid-bunch offset (kick), we studied the long-term
bunch evolution by representing the kick as a superposition
of van Kampen modes. We see that even though the LLD
threshold is lower for higher resonant frequencies, an im-
pact on the beam at the LLD threshold of impedance with
higher frequencies is smaller (Fig. 3). As a rigid-dipole per-
turbation is a common way to study LLD in simulations and
measurements, the LLD threshold and residual oscillation
amplitude allow us to probe both the effective impedance
and its cut-off frequency. This type of measurement, for ex-
ample, was used recently in the CERN Proton Synchrotron
(PS) [47] and SPS [48] to probe their impedance model and
study LLD in a double-RF system [49].

The predictions for the case of the LHC assuming
(Im𝑍/𝑘)eff ≈ 0.07 Ohm and 𝑓𝑟 = 5 GHz (corresponding
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Figure 4: Longitudinal stability map (intensity vs effective
bunch length 𝜏eff = 𝜏FWHM√2/ ln 2 scaled from the Full
Width Half Maximum (FWHM) value) obtained from calcu-
lations with code MELODY. Parameters at the SPS flattop
energy with parameters according to Table 1 with 𝜇 = 1.5
are used. The colour code shows the growth rate of the
most unstable mode, while the grey area indicates param-
eters for which no stationary distribution was found. The
bunch parameters for which the synchrotron frequency is
a non-monotonic function of ℰ are shown as black circles.
The black and red lines show examples of the bunch-length
dependence on intensity due to PWD for constant energy
of synchrotron oscillations ℰmax = 0.12 and ℰmax = 0.57,
respectively. The LLD threshold is marked as a solid white
curve.

to the cut-off frequency of the LHC beam pipe [43]) are con-
sistent with observations in measurements [50]. However,
the revision of the LHC impedance model at high frequen-
cies is ongoing [51] to have accurate predictions of the LLD
threshold for the High-Luminosity LHC (HL-LHC) beam
intensity [52].

SINGLE-BUNCH INSTABILITIES IN SPS
The uncontrolled longitudinal emittance blow-up of single

proton bunches was observed in the SPS during the accel-
eration. Due to the strong frequency dependence of the
SPS impedance [44, 45], the corresponding instability was
mainly studied in macroparticle simulations using the code
BLonD [53, 54]. The latest results of simulations through
the ramp are very close to beam observations if the latest
impedance model is applied as shown in [55].

Depending on the combinations of bunch length and in-
tensity, different types of mode-coupling instabilities are
possible [41]. Considering the beam stability at the SPS flat-
top, the numerical results obtained with the code MELODY
(Fig. 4) were able to reproduce non-monotonic dependence
of thresholds on intensity. and the presence of the unstable
‘island’ which were previously observed in simulations [56,
57]. The stability maps at intermediate energies during the
acceleration cycle have similar non-monotonic behaviour to
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Figure 5: Real (joined by light blue lines, top) and imag-
inary (blue dots, bottom) parts of van Kampen modes as
functions of bunch intensity. The distribution function with
ℰmax = 0.57 corresponds to parameters that belong to the
unstable ‘island’ above the instability threshold. The first
six unstable azimuthal modes are plotted as coloured lines.
Beam parameters correspond to those indicated for the red
line in Fig. 4.

the one at the flat top [58]. We found that the instability in
the dedicated measurements corresponds to beam parame-
ters that are inside the unstable ‘island’ during the part of
acceleration.

Radial Mode-coupling Instability
To clarify the instability mechanism inside an unstable ‘is-

land’ we evaluated van Kampen modes as a function of
intensity for constant energy of synchrotron oscillations
ℰmax = 0.57. The real part of the first six azimuthal modes
𝑚 (Fig. 5, top) does not overlap for the entire intensity
range. Thus, the bunch is unstable due to the coupling of
radial modes. The lowest threshold intensity is for 𝑚 = 3
(Fig. 5, bottom, green), while for higher intensity other az-
imuthal modes are also unstable. This can be attributed to
‘microwave-like’ instability as the bunch line density will be
modulated by a mixture of several unstable modes.

Originally, a radial mode-coupling instability was pro-
posed to analyse the stability of very short, electron, bunches,
when PWD plays an important role but RF non-linearity can
be neglected. Here, the synchrotron frequency distribution
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Figure 6: Synchrotron frequency as a function of
synchrotron-oscillation energy for different intensities and
ℰmax = 0.57. Solid lines are for single-RF potential, while
dashed lines are for a parabolic-RF potential. The black
curve illustrates the case without PWD.

𝜔𝑠 as a function of ℰ is strongly affected by PWD, and the
initial RF non-linearity enhances the non-monotonicity of
𝜔𝑠 (see Fig. 6). At the threshold of instability, (orange) both
𝜔′ and 𝜔′′ close to zero. For even higher intensities, a more
significant overlap of synchrotron frequencies for different
ℰ values is achieved. The instability threshold increases by
almost a factor of five if RF non-linearity and PWD are ne-
glected in calculations for ℰmax = 0.57. It demonstrates the
necessity of self-consistent evaluation of the beam stability
for relatively long bunches.

Azimuthal Mode-coupling Instability
Another instability type, azimuthal mode-coupling, is also

possible in the SPS, but for shorter bunches (Fig. 7). In this
case, modes 𝑚 = 2 and 𝑚 = 3 of LLD type (outside the
incoherent frequency bands) couple above a certain beam
intensity. The threshold obtained in a self-consistent way is
slightly lower than the one evaluated neglecting PWD and
RF non-linearity. However, the instability is significantly
weaker and can be suppressed by a small change in the
particle distribution or even an increase of intensity as the
modes enter the incoherent frequency band again. For even
higher intensity, we also observed a ‘mixed’ mode-coupling
instability, in which the phase-space perturbation involves
several azimuthal modes (Fig. 8), and it has higher growth
rates (Fig. 7, blue).

MULTI-BUNCH INSTABILITIES
Interaction of particle beams with narrowband (NB)

impedance sources can lead to CBI. Its threshold can be
evaluated based on the method of stability diagrams [10]
derived from the Lebedev equation. However, for most of
the existing studies, the contribution of the broadband (BB)
impedance was not considered except in a few examples
when the CBI growth rates were found in the presence of
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Figure 7: Real (joined by light blue lines, top) and imag-
inary (blue dots, bottom) as functions of bunch intensity
for ℰmax = 0.12 (bunch parameters correspond to those in-
dicated for the black line in Fig. 4). Black lines show the
frequencies of the mode for which Landau damping is lost.
The red and blue lines indicate the unstable modes.

two impedance sources [59, 60]. However, the LLD thresh-
old can significantly reduce the CBI threshold [39, 40].

We considered a beam of equidistant 𝑀 bunches each
containing 𝑁𝑝 particles. For the case of the narrow-
band impedance, with a resonator bandwidth, Δ𝜔nb =
𝜔𝑟,nb/2𝑄nb, satisfying the criteria

𝜔𝑠0 ≪ Δ𝜔nb ≪ 𝑀𝜔0, Δ𝜔nb ≪ ∣𝜔𝑟,nb − 𝑝𝑀𝜔0
2 ∣ , (11)

the approximate expression for the CBI threshold can be de-
rived in the short bunch approximation. For the distribution
according to Eq. (2), the instability threshold for 𝜇 > 1

𝑁CBI ≈ 𝑉0𝜙4
max𝑘nb

16𝑞ℎ𝜔0𝑀𝑅nb

× min
𝑦∈[0,1]

⎡⎢
⎣

(1 − 𝑦2)1−𝜇

𝜇(𝜇 + 1) 𝐽−2
1 (𝑦𝑘nb𝜙max

ℎ )⎤⎥
⎦

, (12)

is the lowest for the dipole mode 𝑚 = 1 [38]. Here
𝑘nb = ⌊𝜔𝑟,nb/𝜔0⌋, where ⌊𝑥⌋ denotes the rounding of 𝑥
to the nearest integer, and 𝐽𝑚(𝑥) is the Bessel function of
the first kind and the order 𝑚.

To evaluate the instability threshold in the general case
when both NB and BB impedance sources are included,

Figure 8: Phase space of the most unstable mode for 𝑁𝑝 =
2.0 × 1011 and ℰmax = 0.12 computed with MELODY using
the SPS impedance model from before LS2. The SPS pa-
rameters are according to Table 1.

either the Lebedev equation has to be numerically solved or
the Oide-Yokoya method needs to be applied. Based on the
approach described in [35], we proposed the approximate
expression for the generalised instability threshold [39, 40]

1/𝑁𝑔 ≈ 1/𝑁LLD + 1/𝑁CBI. (13)

Here, 𝑁CBI and 𝑁LLD are defined in Eqs. (4) and (12), re-
spectively. The corresponding unstable coherent mode Ω𝑔
differs from ΩCBI found for the NB case only, as well as
from the LLD case where Ω = 𝜔𝑠(0).

An example of the computed CBI growth rate as a func-
tion of the single-bunch intensity for the LHC ring is shown
in Fig. 9. The CBI threshold is significantly reduced when
the BB impedance is included, compared to the one de-
fined by the higher-order mode (HOM) of Double Quar-
ter Wave (DQW) crab cavities only [61]. Moreover, the
instability threshold is very close to the LLD threshold
(dashed line) and, thus, dominated by the inductive part
of the BB impedance. To make accurate predictions of the
CBI threshold for the HL-LHC parameters, the precise BB
impedance model is necessary, which is currently under
re-evaluation [51].

The final example corresponds to calculations with
MELODY for the SPS parameters at extraction energy (Ta-
ble 1) for different numbers of bunches usually injected into
LHC (Fig. 10). The threshold of instability is below the one
for LLD and weakly depends on the number of bunches due
to a strong impact of the BB impedance in the SPS. For exam-
ple, for 72 bunches the CBI threshold due to HOMs of 200
MHz RF system around 914 MHz is about 5.5 × 1010. This
is consistent with beam observations where for acceleration
of high-intensity LHC beams, an additional 800-MHz RF
system is routinely deployed leading to the raised CBI thresh-
old [62]. As expected, above the CBI threshold, the growth
rates are larger for a longer train as the instability builds
up along the bunches. The results obtained with MELODY
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Figure 9: Growth rates of multi-bunch instability versus
bunch intensity found with MELODY for the LHC ring with
𝑀 = ℎ/10, 𝜙max = 2.4, and 𝜇 = 2 (see Table 1, except
𝑉0 = 8 MV). NB impedance 𝑅nb = 4 × 71 kOhm (four crab
cavities), 𝑓𝑟,nb = 582 MHz, 𝑄nb = 1360 with and without
BB impedance.
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Figure 10: Growth rate of multi-bunch instabilities in the
SPS as a function of bunch intensity for different numbers
of bunches in the train. The vertical line corresponds to
the LLD threshold. The crosses indicate the fitted growth
rate from macroparticle simulations with BLonD. Beam and
accelerator parameters are from Table 1.

are consistent with the macroparticle simulations using the
code BLonD. Some differences can be explained by the fact
that several coupled-bunch modes are excited at the same
time, which can interfere with and modify the bunch position
oscillations.

CONCLUSION
Loss of Landau damping (LLD) and beam instabilities in

the longitudinal plane can be important performance limita-
tions for existing and future synchrotrons. The recent studies
concerning these effects [35, 39–41] were reviewed in this
paper.

The analytic expression for the LLD threshold of the
dipole oscillations was proposed for the case of a single
RF system and a particle distribution of the binomial family.
The threshold is zero for a constant inductive impedance
Im𝑍/𝑘 above transition or capacitive below. Once a finite
cut-off frequency is introduced, the threshold becomes in-
versely proportional to the cut-off frequency 𝑓𝑐 once it is

larger than the inverse of the full bunch length 𝜏full. The
commonly used dependence of the LLD threshold on the
bunch length to the fifth power (e.g., based on the Sacherer
approach) is justified only for the specific cut-off frequency,
𝑓𝑐 ≈ 1/𝜏full. The dependence of the threshold on the bunch
length changes to the power of four for the case of a higher
cut-off frequency, 𝑓𝑐 ≫ 1/𝜏full. These studies also led to
a new definition of the effective impedance and the corre-
sponding cut-off frequency to estimate the LLD threshold
of more complicated impedance models. It is also shown
that the impact on the beam close to the LLD threshold is
smaller for higher 𝑓𝑐.

Radial and azimuthal mode-coupling mechanisms of lon-
gitudinal single-bunch instabilities in the SPS were demon-
strated by the self-consistent numerical analysis. The for-
mer mechanism, which was typically studied for very short,
electron, bunches, is significantly affected by the RF non-
linearity for long proton bunches. For example, the assump-
tion of a linear RF field in the SPS leads to an underestima-
tion of the real instability threshold up to a factor of five.
Radial mode-coupling can appear simultaneously for several
azimuthal modes for some combination of bunch parame-
ters and thus has a signature of microwave instability. The
latter mechanism is also possible in the SPS but for shorter
bunches. It is a result of the coupling of the modes that lose
Landau damping (moving outside the incoherent frequency
bands). It is found that this instability is weaker than the
one obtained previously using non-self-consistent analysis.
Another instability, ‘mixed’ mode-coupling, with signatures
of both radial and azimuthal mode coupling is possible when
there is a significant overlap of synchrotron frequency bands
for different azimuthal modes.

Finally, the impact of the broadband impedance on
the coupled-bunch instability driven by the narrowband
impedance was discussed. A general expression for the
multi-bunch instability threshold in the presence of two dif-
ferent types of impedance was proposed. For the considered
cases of LHC and the LHC-type beams in the SPS, the
instability threshold is significantly reduced when broad-
band impedance is included in the analysis. It is even lower
than the LLD threshold. The new model explains experi-
mental observations and needs to be considered for future
synchrotrons.
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