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Abstract
Imposing defined spinning to a particle beam increases its

stability against perturbations from space charge. In order
to fully explore this potential, proper matching of intense
coupled beams along regular lattices is mandatory. Herein, a
novel procedure assuring matched transport is described and
benchmarked through simulations. The concept of matched
transport along periodic lattices has been extended from un-
coupled beams to those with considerable coupling between
the two transverse degrees of freedom. For coupled beams,
matching means extension of cell-to-cell periodicity from
just transverse envelopes to the coupled beam moments and
to quantities being derived from these.

INTRODUCTION
Preservation of beam quality is of major concern for ac-

celeration and transport especially of intense hadron beams.
This aim is reached at best through provision of smooth
and periodic beam envelopes, being so-called matched to
the periodicity of the external focusing lattice. The latter is
usually composed of a regular arrangement from solenoids
or quadrupoles. For the time being, the quality of matching
has been evaluated through the periodicity of spatial beam
envelopes. This is fully sufficient as long as there is no cou-
pling between the phase space planes (for brevity “planes”),
neither in beam properties nor in lattice properties.

Spinning of beams is a very promising tool to further
augment accelerator performance. It requires coupling be-
tween planes and thus imposes dedicated efforts for proper
matching to periodic lattices. Beam matching with cou-
pling between the horizontal and longitudinal planes has
been investigated in [1]. Special cases of beams with zero
four-dimensional emittances have been treated in [2] The
present work is on the development and demonstration of a
method to assure rms-matched transport of intense beams
with considerable transverse coupling, an issue being ad-
dressed conceptually in [3]. It partially implements the early
concept, i.e. tracking of moments, into a procedure to obtain
full cell-to-cell four-dimensional (4D)-periodicity. Through
simulations it is shown that the lattice periodicity is not just
matched by the two transverse envelopes but also by the
beam rms-moments that quantify coupling. To this end, an
iterative procedure towards the periodic solution is applied.
It starts from determining the solution with zero current, us-
ing a method that is applied later also to beams with current.

Coupled beams inhabit ten independent second-order rms-
moments. They are summarized within the symmetric beam
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moments matrix

𝐶 ∶=
⎡
⎢⎢⎢
⎣

⟨𝑥𝑥⟩ ⟨𝑥𝑥′⟩ ⟨𝑥𝑦⟩ ⟨𝑥𝑦′⟩
⟨𝑥′𝑥⟩ ⟨𝑥′𝑥′⟩ ⟨𝑥′𝑦⟩ ⟨𝑥′𝑦′⟩
⟨𝑦𝑥⟩ ⟨𝑦𝑥′⟩ ⟨𝑦𝑦⟩ ⟨𝑦𝑦′⟩
⟨𝑦′𝑥⟩ ⟨𝑦′𝑥′⟩ ⟨𝑦′𝑦⟩ ⟨𝑦′𝑦′⟩

⎤
⎥⎥⎥
⎦

. (1)

Four of its elements quantify beam coupling. Beams are
𝑥-𝑦 coupled if at least one of these elements is different from
zero.

A simple way to impose spinning to a beam is to pass it
through an effective half solenoid. Although half solenoids
do not exist due to ∇⃗ ⋅ 𝐵⃗ = 0, their effect can be imposed
by particle creation inside the solenoid or by changing the
beam charge state inside the solenoid [4,5] and demonstrated
experimentally in [6].

The first part of the transport matrix 𝑆ℎ of an effective
half solenoid is given by the matrix 𝑆→ of the main body of
the solenoid of effective length 𝐿, comprising just the pure
longitudinal magnetic field 𝐵𝑠

𝑆→ =
⎡
⎢
⎢
⎢
⎣

1 sin(2𝐾𝐿)
2𝐾 0 1−cos(2𝐾𝐿)

2𝐾
0 cos (2𝐾𝐿) 0 sin (2𝐾𝐿)
0 −1−cos(2𝐿)

2𝐾 1 sin(2𝐾𝐿)
2𝐾

0 − sin (2𝐾𝐿) 0 cos (2𝐾𝐿)

⎤
⎥
⎥
⎥
⎦

, (2)

with 𝐾 ∶= 𝐵𝑠/ [2 (𝐵𝜌)] (Larmor wave number) and (𝐵𝜌)
as beam rigidity.

The second part of 𝑆ℎ is from the fringe field matrix 𝑆↓
of the solenoid exit

𝑆↓ =
⎡
⎢⎢⎢
⎣

1 0 0 0
0 1 −𝐾 0
0 0 1 0
𝐾 0 0 1

⎤
⎥⎥⎥
⎦

, (3)

and the total matrix of the half solenoid is the product of
both matrices

𝑆ℎ = 𝑆↓ ⋅ 𝑆→ = [𝑆ℎ
𝑥𝑥 𝑆ℎ

𝑥𝑦
𝑆ℎ

𝑦𝑥 𝑆ℎ
𝑦𝑦

] . (4)

The determinants of the diagonal sub-matrices 𝑆ℎ
𝑥𝑥 and 𝑆ℎ

𝑦𝑦
are different from 1.0, hence the projected rms-emittances
are changed by 𝑆ℎ. Additionally, 𝑆ℎ

𝑥𝑦 and 𝑆ℎ
𝑦𝑥 are also differ-

ent from zero, thus coupling will be imposed to an initially
uncoupled beam. Although being non-symplectic, 𝑆ℎ has
the determinant of 1.0 preserving the product of the two
eigen-emittances.

The beam line being used to determine the periodic solu-
tion of an intense coupled beam along a periodic channel is
sketched systematically in Fig. 1.
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Figure 1: The beam line comprises three parts: (I) effective
half solenoid; (II) matching section; (III) regular quadrupole
doublet section (twelve cells). Space charge effects are not
considered along the first two sections (see text).

At the beginning of the beam line, an uncoupled beam is
assumed with beam sigma-matrix 𝐶 (𝑠0). The beam matrix
at the beginning of the matching section is

𝐶 (𝑠1) = 𝑆ℎ ⋅ 𝐶 (𝑠0) ⋅ (𝑆ℎ)T . (5)

The matching section is modeled through the symplectic
and coupling matrix ℜ and hence

𝐶 (𝑠2) = ℜ ⋅ 𝐶 (𝑠1) ⋅ ℜT , (6)

is the beam matrix at the entrance to the quadrupole channel.
At the entrance to the beam line at 𝑠0, an uncoupled pro-

ton beam with an energy of 150 keV/u is assumed. Beam
Twiss parameters are set to 𝜀𝑥 = 𝜀𝑦 = 69.90 mm mrad,
𝛽𝑥 = 𝛽𝑦 = 2 m/rad, 𝛼𝑥 = 0.250, and 𝛼𝑦 = -0.275, while
the length of the half solenoid is set to 0.25 m. After trans-
port through this half solenoid the beam matrix (in units of
mm and mrad) is

𝐶 (𝑠1) =
⎡
⎢⎢⎢
⎣

+133.6 −8.578 +2.021 +124.9
−8.578 +139.5 −124.9 −31.08
+2.021 −124.9 +151.4 +28.22
+124.9 −31.08 +28.22 +154.1

⎤
⎥⎥⎥
⎦

, (7)

In order to obtain a periodic solution for a coupled beam,
the details of the matching section are not required as seen in
the following. However, it is modeled by a transport matrix
including 16 elements

ℜ (𝑚1, 𝑚2, … , 𝑚16) =
⎡
⎢⎢⎢
⎣

𝑚1 𝑚2 𝑚3 𝑚4
𝑚5 𝑚6 𝑚7 𝑚8
𝑚9 𝑚10 𝑚11 𝑚12
𝑚13 𝑚14 𝑚15 𝑚16

⎤
⎥⎥⎥
⎦

. (8)

Although initially being unknown, the 16 elements must
provide for det (ℜ) = 1.0 and that ℜ is symplectic. For
brevity, the set of 𝑚1, 𝑚2, … , 𝑚16 shall be denoted by ℵ.

MODELING OF PERIODIC CHANNEL
For zero current, the effective focusing forces are given

solely by the external lattice. The actual beam shape has no
influence on them and therefore the periodic solution even for
coupled beams may be found analytically. For intense beams
instead, defocusing space charge forces depend on the beam
shape and orientation in real space. Actually, they depend

also on the spatial distribution. However, since modeling of
space charge forces using rms-equivalent KV-distributions
proofed to work very well for matching purposes, this ap-
proach is followed here as well.

The periodic solution meets the condition

𝐶 (𝑠2) = ℑ ⋅ 𝐶 (𝑠2) ⋅ ℑT = 𝐶 (𝑠2 + ℓ) , (9)

where ℓ is the length of one cell and the transport matrix
from the exit of the solenoid 𝑠1 to the exit of the first cell is

℧ (ℵ) = ℑ ⋅ ℜ (ℵ) , (10)

where ℑ is fully known from the cell of the quadrupole
channel.

From first principles, neither the periodic solution is
known nor are the elements ℵ that provide for the according
matching from the exit of the solenoid 𝑠1 to the entrance
of the channel 𝑠2. The iterative procedure to obtain finally
both, starts with a guessed initial set ℵ𝑖 that just meets the
condition of being symplectic and det [ℜ (ℵ𝑖)] = 1.0. It will
most likely not meet the condition of the periodic solution,
i.e.,

ℜ (ℵ𝑖)⋅𝐶 (𝑠1)⋅ℜT (ℵ𝑖) ≠ ℧ (ℵ𝑖)⋅𝐶 (𝑠1)⋅℧T (ℵ𝑖) , (11)

hence the beam matrix in front of the channel is different
from the one behind the first cell.

With the MATHCAD [7] routine Minerr, a set of match-
ing matrix elements ℵ0 for zero beam current can be found,
such that the symplectic condition and det [ℜ (ℵ0)] = 1.0
is met sharply together with providing periodicity. The rou-
tine is dedicated to solve an under-determined system of
equations with a defined set boundary conditions.

ℜ (ℵ0)⋅𝐶 (𝑠1)⋅ℜT (ℵ0) = ℧ (ℵ0)⋅𝐶 (𝑠1)⋅℧T (ℵ0) . (12)

With ℵ0 being determined, the periodic beam matrix at
the beginning of the channel has been calculated as

𝐶0 (𝑠2) =
⎡
⎢⎢⎢
⎣

+158.1 +0.000 −76.88 +95.30
+0.000 +97.93 −27.65 −164.1
+76.88 −27.65 +56.66 +0.000
+95.30 −164.1 +0.000 +438.9

⎤
⎥⎥⎥
⎦

, (13)

and it is equal to 𝐶0 (𝑠2 + ℓ). As for the case of an un-
coupled beam, the periodic solution of the coupled beam
features 𝛼𝑥,𝑦 = 0 as expected from the symmetry of the regu-
lar cell of the channel. However, the corresponding coupling
parameters from combinations of other planes are different
from zero due to inter-plane coupling. The zero current
transport matrix ℑ (ℵ0) is independent of the initial beam
matrix 𝐶0 (𝑠2) and is determined only by the lattice of the
quadrupole channel.

PERIODIC SOLUTION WITH CURRENT
For KV-beams, the electric self-field caused by space

charge can be calculated analytically as done by Sacherer [8]
for uncoupled beams, i.e., for upright ellipses. In case of
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coupling, the ellipse is generally tilted as drawn in Fig. 2.
Here, the space charge forces are firstly calculated within
the tilted frame. In a second step, these forces are projected
into the upright laboratory frame and applied to the beam.
They are equivalent to a defocusing quadrupole kick in both
planes. The strengths are not equal along both planes but the
resulting 4D-transformation is linear and symplectic. Hence
it will be modeled by another 4×4 transport matrix 𝜘.

Figure 2: Ellipse of an 𝑥-𝑦 coupled beam in real space. 𝐴𝑥𝑦
is the rms-area of the beam, see Eq. (14). Parameters 𝛼𝑥𝑦
and 𝛽𝑥𝑦 are its equivalent Twiss parameters defining the
ellipse orientation and aspect ratio in real space.

The ellipse is described by its two semi-axes 𝑎1 and 𝑎2
and by the rotation angle 𝜃 of 𝑎1 w.r.t. 𝑥-axis. Its rms-area
is given by

𝐴𝑥𝑦 = √⟨𝑥𝑥⟩⟨𝑦𝑦⟩ − ⟨𝑥𝑦⟩2 = 𝑎1𝑎2 . (14)

The above ellipse parameters are calculated from the beam
second moments through

𝛽𝑥𝑦 = ⟨𝑥𝑥⟩
𝐴𝑥𝑦

, 𝛼𝑥𝑦 = −⟨𝑥𝑦⟩
𝐴𝑥𝑦

, (15)

Θ = 1
2𝑎𝑡𝑎𝑛 [ 2 < 𝑥𝑦 >

< 𝑥𝑥 > − < 𝑦𝑦 >] ℎ = < 𝑥𝑥 > + < 𝑦𝑦 >
2𝐴𝑥𝑦

(16)

𝑎1,2 = √𝐴𝑥𝑦
2 (√ℎ + 1 ± √ℎ − 1) . (17)

The transport matrix 𝜘 is calculated from the ellipse geo-
metric parameters and the general beam parameters as

𝜘 = 𝑅−1 (Θ) ⋅ 𝜘∗ ⋅ 𝑅 (Θ) , (18)

where 𝜘∗ is the matrix in the tilted ellipse frame. It reads

𝜘∗
1,2 = [ 1 0

𝜅1,2𝛿𝑠 1] , 𝜘∗ = [𝜘∗
1 𝑂

𝑂 𝜘∗
2
] , (19)

with 𝛿𝑠 being the step size along 𝑠 between two space charge
kicks. 𝜅1,2 are the respective kick strengths along each

semi-axis and are given by

𝜅1 = 𝜅sc
2𝑎1 (𝑎1 + 𝑎2) , 𝜅2 = 𝜅sc

2𝑎2 (𝑎1 + 𝑎2) , (20)

from the generalized beam perveance

𝜅sc = 𝑞𝐼
2𝜋𝜖0𝑚 (𝛾𝛽𝑐)3 , (21)

with 𝑞 as particle charge, 𝐼 as beam current, and 𝛽 and 𝛾 as
relativistic factors.

Solutions of the beam matrix along the periodic channel
are considered as periodic, if the equation

𝐶 (𝑠2) ≈ 𝐶 (𝑠2 + ℓ) (22)

is fulfilled to very good approximation. Last section pre-
sented such a solution 𝐶0 (𝑠2) for zero current. This solution
will not hold with beam current being switched on. In order
to find a solution that holds even with current, another itera-
tive procedure is applied. It uses the method of determining
a matching setting ℵ presented in last section. Additionally,
it performs an iterative switching between obtaining the pe-
riodic transport matrix from tracking and using it to re-adapt
the matching to it.

The iterative procedure starts from the beam moments
matrix 𝐶 (𝑠1) behind the solenoid being then transported
through the matching line ℜ (ℵ0) for zero current. The
resulting beam matrix at the entrance to the channel

𝐶0 (𝑠2) = ℜ (ℵ0) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ0) , (23)

is then tracked with high current (10 mA) through one cell.
Accordingly, the total transport matrix of the cell ℑsc (ℵ0) is
a result of the tracking procedure for high current. ℑsc (ℵ0)
depends on the current 𝐼 and on the spatial beam parameters
at the entrance of the channel. The 4×4 elements of ℑsc (ℵ0)
are stored for further use. Most likely, 𝐶0 (𝑠2) does not meet
the condition of the periodic solution with current, i.e,

𝐶0 (𝑠2) ≠ ℑsc (ℵ0) ⋅ ℜ (ℵ0) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ0) ⋅ ℑT
sc (ℵ0) .

(24)
However, the cell matrix ℑsc (ℵ0) is used to re-adapt the

matching setting such, that a new matching ℵ1 is found which
provides for equal beam matrices before and after transport
through the cell matrix ℑsc (ℵ0)

𝐶1 (𝑠2) = ℑsc (ℵ0) ⋅ ℜ (ℵ1) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ1) ⋅ ℑT
sc (ℵ0) ,

(25)
emphasizing that the above equation uses the stored elements
of ℑsc (ℵ0).

This new matching ℵ1 delivers the beam matrix 𝐶1 (𝑠2)
in front of the channel. It is now re-tracked with current
through the cell. The tracking will provide a new cell matrix
ℑsc (ℵ1). Again its 4×4 elements are stored to re-adapt
the matching to a setting ℵ2 meeting the periodic solution
assuming the new matrix ℑsc (ℵ1) along the channel

𝐶2 (𝑠2) = ℑsc (ℵ1) ⋅ ℜ (ℵ2) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ2) ⋅ ℑT
sc (ℵ1) .

(26)
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This in turn provides a new beam matrix 𝐶2 (𝑠2) in front
of the channel, which changes the transport matrix of the
cell to ℑsc (ℵ2). Continuing this procedure finally converges,
i.e., the changes from ℵ𝑛−1 to ℵ𝑛 become very small and
finally negligible. Accordingly, after a sufficient amount of
iterations 𝑗, the periodic condition is fulfilled through

𝐶𝑗 (𝑠2) ≈ ℑsc (ℵ𝑗)⋅ℜ (ℵ𝑗)⋅𝐶 (𝑠1)⋅ℜT (ℵ𝑗)⋅ℑT
sc (ℵ𝑗) . (27)

The matrix 𝐶𝑗 (𝑠2) contains the periodic beam moments
at the entrance to the channel and ℑsc (ℵ𝑗) is the periodic
transport matrix of the cell including current and coupling.

In case of the example presented here, sufficient conver-
gence has been reached at 𝑗 = 4 and the corresponding beam
matrix (in units of mm and mrad) is

𝐶4 (𝑠2) =
⎡
⎢⎢⎢
⎣

+153.0 −0.004 −86.70 +0.006
−0.004 +85.92 −0.004 −170.2
−86.70 −0.004 +68.44 +0.019
+0.006 −170.2 +0.019 +431.3

⎤
⎥⎥⎥
⎦

, (28)

the corresponding output beam matrix is

𝐶4 (𝑠2 + ℓ) =
⎡
⎢⎢⎢
⎣

+153.3 +0.110 −86.72 +0.660
+0.110 +85.71 −0.215 −170.2
−86.72 −0.215 +68.30 −0.131
+0.660 −170.2 −0.131 +432.2

⎤
⎥⎥⎥
⎦

,

(29)
the according transport matrix along the channel (one cell)
is determined as

ℑsc (ℵ4) =
⎡
⎢⎢⎢
⎣

+0.476 +1.263 +0.126 +0.022
−0.611 +0.476 +0.128 +0.038
+0.038 +0.022 +0.440 +0.374
+0.128 +0.126 −2.148 +0.441

⎤
⎥⎥⎥
⎦

. (30)

The corresponding phase advances are 𝜇𝑥 = 61.59∘ and
𝜇𝑦 = 63.87∘. These are considerably lower than those of the
zero current case of 71.26∘.

The corresponding rms-moments along a channel com-
prising two cells are plotted in Fig. 3. It has been shown that
cell-to-cell periodicity of an intense coupled coasting beam
can be achieved under the assumption of a KV-distribution.

Results from rms-tracking have been benchmarked with
the BEAMPATH code using a Gaussian distribution. Fig-
ure 4 plots the respective horizontal and vertical beam en-
velopes along 10 lattice periods. Very good agreement has
been found, hence demonstrating that rms-matching works
very well even for coupled beams.

CONCLUSION
It has been shown that cell-to-cell 4D-matching can be

achieved for a coupled beam with considerable space charge
forces. This has been accomplished by rms-tracking of cou-
pled beams with KV-distribution combined with a dedicated
iterative procedure of tracking and re-matching. Hence, it
provides a tool for systematic investigations of intense, cou-
pled beam transport along periodic lattices.

Figure 3: The ten independent rms-moments along the reg-
ular quadrupole channel (two cells) for a coupled proton
beam with 10 mA. Left: rms-moments ⟨𝑥𝑥⟩, ⟨𝑦𝑦⟩, and ⟨𝑥𝑦⟩
(red, blue, and green); Middle: rms-moments ⟨𝑥𝑥′⟩, ⟨𝑦𝑦′⟩,
⟨𝑥𝑦′⟩, and ⟨𝑥′𝑦⟩ (red, blue, green, and magenta); Right: rms-
moments ⟨𝑥′𝑥′⟩, ⟨𝑦′𝑦′⟩, and ⟨𝑥′𝑦′⟩ (red, blue, and green).

Figure 4: Horizontal and vertical rms-envelopes along the
regular quadrupole channel (10 cells) for a coupled proton
beam with 10 mA. Blue: rms-tracking, red: BEAMPATH.
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