Improvement of Capture Ratio for an X-band Linac Based on Multiobjective Genetic Algorithm

Junyang Li, Tongning Hu, Jun Yang, Bingqian Zeng, Hongjie Xu, Lanxin Nie

Huazhong University of Science and Technology

HB2021

Design consideration

• Obviously, the fitting curves are consistent with the calculation results of SUPERFISH well.

Design consideration

• simplify the structure design and realization, the same iris radius is used here

D : cavity length

a : iris radius

b : waveguide radius

t : iris thickness

1.5cell in SUPERFISH

three-dimensional model

Combining previous literatures and engineering experiences, the structure of six-segment cavity chain is adopted

	1	2	3	4	5	6
$m{eta}_{p{ m min}}$	0.36	0.50	0.72	0.92	0.96	0.98
$eta_{p\max}$	0.43	0.57	0.75	0.95	0.97	0.99
Number of cells	4	5	5	6	6	16

Design consideration

Capture ratio

$$\eta = \frac{M}{N} \times 100\%$$

- *N*: the initial number of electrons in a period $[-360^{\circ},0]$
- φ : the median phase of these *N* electrons at the last cell
- *M*: the number of electrons whose phase at the last cell is $[\varphi_1 180^0, \varphi_1 + 180^0]$

energy spread

$$\sigma = \frac{1}{\overline{W}} \sqrt{\frac{1}{M} \sum_{i=1}^{M} \left(W_i - \overline{W} \right)^2}$$

 W_i : last energy of different initial phase

 \overline{W} : average energy

Simulation

The eight Pareto front points obtained by NSGA-II

capture ratio: 87.4% -92.0%

> energy spread: 4.18% -5.52%

take the representative points 1, 4, and 8 to plot the corresponding phase velocity distribution

capture ratio and energy spread are related to the first two segments of the cavity chain

Simulation

The sixth pareto front point is selected to analyse the movement process of electrons in TW accelerator

The particles of 328° can be captured Capture ratio: 91.2% Captured electrons oscillate in phase

Oscillating and increasing

Simulation

To analyse the capture ratio and energy spread

The phase are compressed to 75°

Most are concentrated at the maximum acceleration phase of -270°

The energy is distributed within 2.6~3.4MeV Most are concentrated in 2.9~3.3MeV Energy spread : 5.19%

CONCLUSION

> The fitting model is feasible and improves the efficiency of algorithm.

Based on NSGA-II, the phase velocity distribution with high capture ratio and low energy spread is obtained, which provides the design basis for ~MeV TW cube that can be used in industry.