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rigid dipolar centroid oscillation:

@ Newton's third law,
actio = reactio
— no influence from direct
space charge (SC)
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Motivation

) \ )
rigid dipolar centroid oscillation: quadrupolar envelope oscillation:
@ Newton's third law, o defocused by transverse
actio = reactio space charge
— no influence from direct — frequency of envelope
space charge (SC) ) oscillation decreases with SC )

—> measure direct space charge through frequency shift of beam size
oscillations about matched oy,
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Content of this talk:
@ Introduction
e spectrum of a quadrupolar pick-up
@ Equipment in LHC Injector Rings: Status and Plans

@ Applications and Ongoing Studies

e quadrupolar beam transfer function to characterise high-brightness
PS beams

— influence of chromaticity
— coherent dispersive mode

o PS injection: transfer line mismatch
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1. Introduction



Schematic Quadrupolar Pick-up

modified image taken from [1]

Evaluating the four pick-up signals as
(L+R)—-(T+B)
results in the turn by turn signal

SQPU(iturn) X <x2> - <y2> = Ui(iturn) - O'i(iturn) + <x>2(iturn) - <J/>2(iturn)
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Some Historical Perspective

QPU in time domain for emittance measurements:
e 1983, R. H. Miller et al. at SLAC [2]
@ 2002, A. Jansson at CERN in PS [3]

QPU in frequency domain for emittance measurements:
@ 2007, C.Y. Tang at Fermilab [4]

QPU in frequency domain for space charge measurements:
@ 1996, M. Chanel at CERN in LEAR [5]
@ 1999, T. Uesugi et al. at NIRS in HIMAC [6]
@ 2000, R. Bar at GSI in SIS-18 [7]
@ 2014, R. Sing et al. at GSl in SIS-18 [1]
— all far away from coupling and coasting beams

CERN's proton synchrotrons peculiar:
@ close to coupling = quadrupolar mode frequencies change
@ bunched beam
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Quadrupolar Injection Oscillations (GSI results at SIS-1

QPU measurements at GSI by R. Singh, M. Gasior et al. [1]
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Figure 6: Shift of coherent quadrupole mode Qcon,1 With Qeon = Qx
beam current.

— far away from coupling resonance
— coasting beam = sharp envelope peak
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Incoherent KV Tune Shift

The Kapchinskij-Vladimirskij (KV) beam distribution has all particles at
same incoherent space charge tune shift:

KSCR2
40,y (05 +0y)Qx,y
L ltoxyloyx
2Qx,y

AQKY =

(1a)

(1b)

A
space charge perveance K¢ = 67—2
2meg Y= poc
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Incoherent KV Tune Shift

The Kapchinskij-Vladimirskij (KV) beam distribution has all particles at
same incoherent space charge tune shift:

SC p2
QY z-— X (1a)
o 40,y(0x+0y)Qx,y
L L+oyyloy (1b)

2Qx,y

Connect A quantity to general 2D envelope mode expressions in terms of
observables:

Q2 -4Q5+ Q)

T4+ 3(oxloy+ayloy)

(2)
(Gaussian tune spread = 2x the RMS-equivalent KV tune shift!)
A
space charge perveance K¢ = q

- 2meofy? poc
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Far Away vs. On the Coupling Resonance

2 eigenmodes for coherent quadrupolar betatron oscillation:

far away from coupling

(a) horizontal mode (b) vertical mode
Quadrupolar mode tunes:

Q+= 2Qx,y

- |aqky

o 3
(3_ XYy )/2 ( )
Ox+0y

<
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Far Away vs. On the Coupling Resonance

2 eigenmodes for coherent quadrupolar betatron oscillation:

far away from coupling full coupling

O Q| O
(a) horizontal mode (b) ver';i;al mode (a) breathing mode (b) antisym. mode
Quadrupolar mode tunes: Quadrupolar mode tunes:

Qs =2Qu, Qs =2Qo - [aQKY| (4a)
_ ‘AQ?}/ (3 - %) P Q_=2Q,- g )AQ,’}}/ (4b)

(assuming round beams, Qy,, = Qo)
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Peculiarity 1: Near Coupling Resonance

At vanishing lattice coupling, keep constant incoherent SC tune shift and
fixed Q. Vary Q) for a coasting round beam:

analytic expression simulation results

fixed Q,=6.22, N=1.2x 10" fixed Q,=6.22, N=1.2x10?
12.46 . . : r r 12.46 - T
n 12.44 n 12.44 | i A
Q (4] >
c c !
21242 | 21242 ¢}
8 [}
S 12.40 5‘12.40 +
% 12.38 } ué 12.38 } ; o o simulations
[} o — Q_ (theory)
12.36 | 12.36 | : Q. (theory)
6.20 6.21 6.22 6.23 6.24 6.20 6.21 6.22 6.23 6.24
Qy Q!/
v v
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Peculiarity 2: Bunched Beam Envelope Signal

Assumption (justification e.g. [6]):
@ synchrotron motion much slower than betatron motion, Qs < Qxo,y0
— 3D RMS envelope equation (Sacherer) decouples to 2D + 1D
= for a given longitudinal bunch slice, the coherent transverse

quadrupolar oscillation depends on local line charge density A(z),
longitudinal motion is quasi-stationary and independent

line charge density A(z)
envelope spectral power

longitudinal position = envelope tune Q

Figure: sketch of envelope detuning scaling with local line charge density
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1. Introduction:

QPU Spectrum Simulations




Coasting: KV Beam

l bunched [ transv. distr. [ synchrotron motion [ dispersion [ chromaticity ‘

l no [ KV (uniform) [ no [ no [ no ‘

Turn 0 out of 256

yImm]

o
[mm]

Turn 0 out of 256

[10-%)
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Coasting: KV Beam

l bunched [ transv. distr. [ synchrotron motion [ dispersion [ chromaticity ‘

l no [ KV (uniform) [ no [ no [ no ‘

Turn 0 out of 256

Spectrum of o7 — o}

0.0016 |

Q. Q, 2Q., $Q,

0.0014 |

yImm]

0.0012 |

5 0.0010 |

o
[mm]

0.0008 |

Turn 0 out of 256

0.0006 |

Spectral amplitude

0.0004
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Fractional quadrupolar tune

o
(m)
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Coasting: KV Beam with Dispersion

l bunched [ transv. distr. [ synchrotron motion [ dispersion [ chromaticity ‘

l no [ KV (uniform) [ no [ yes [ no ‘

Turn 0 out of 256

Spectrum of o2 — o7

Q: Qy 2Q. pQ,

0.0008 |
[
o
2

= 0.0006 |
[=%
" IS
[mm] E

Turn 0 out of 256 g 0.0004 |
]
(9]
Q
%]

0.0002 |

. 0.0000 *

0.0 0.1 0.2 0.3 0.4 0.5

Fractional quadrupolar tune
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Coasting: RMS-equiv. Gaussian Beam with Dispersion

l bunched [ transv. distr. [ synchrotron motion [ dispersion [ chromaticity ‘

l no Gaussian [ no [ yes [ no ‘

Turn 0 out of 256

Spectrum of o7 — o}
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Fractional quadrupolar tune
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Bunched KV Beam

l bunched [ transv. distr. [ synchrotron motion [ dispersion [ chromaticity ‘

l yes [ KV (uniform) [ no [ no [ no ‘

Turn 0 out of 256

Spectrum of o7 — o}

Q. QQ. 2Q,
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2. Equipment in LHC Injectors:

Status and Plans




PS: Quadrupolar Pick-up

Stripline pick-up PR.BQL72 is part of the BBQ system:

courtesy Tom Levens

Currently recabled to quadrupolar mode (started in 2016):

@ S]
@ © @ @
——
S] S]
(a) dipolar (b) quadrupolar

Adrian Oeftiger Quadrupolar Mode Measurements



PS: Transverse Feedback (TFB) as Quadrupolar Kicker

Kicker in section 97 is part of the new PS transverse feedback system:

courtesy Guido Sterbini

Since May 2018:
@ source signal for quadrupolar excitation comes from BBQ system

— new dedicated card BQL72_Q to control excitation parameters
separately from dipolar tune measurements
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MERS

Pick-up side:
@ in PS, upgrade BQL72 with 3 channel frontend,
simultaneously extract
o dipolar signals (x) and (y),
e quadrupolar signal Q
— technical stop in June 2018

@ in PSB, make use of brand-new (2018) stripline pick-ups
— install 3 channel frontend to include Q channel
— during 2018

@ in SPS, upgrade existing BBQ system with Q channel
— install new 3 channel frontend during LS2

Kicker side:
@ separate quadrupolar excitation signal path from rest of system
— possibility to operate dipolar feedback system in closed loop +
simultaneous quadrupolar excitation (these coming weeks)

Adrian Oeftiger Quadrupolar Mode Measurements

16 of 28



3. Application:

(a) quadrupolar beam transfer function (2017)




Goal of Study

In the context of strong space charge regime with LHC Injectors
Upgrade beam parameters: determine beam brightness (or incoherent

KV tune shift) directly via coherent quadrupolar modes

Starting from nominal LHC beam-type set-up:
o (large) natural chromaticity: Q' =-0.83Qy and Q;, =-1.12Q,
o lattice is usually strongly coupled via skew quadrupoles to stabilise
slow horizontal head-tail instabilities
— decouple lattice during envelope measurements
= only space charge coupling in envelope tunes
— measure quadrupolar beam transfer function to learn about space

charge

Adrian Oeftiger Quadrupolar Mode Measurements
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Experimental Set-up

Ingredients:
@ small time window of 15 ms with decoupled optics
@ chirped quadrupolar excitation of beam via transverse feedback:
external waveform generator connected to kicker plates
e 12ms long frequency sweep with 1 ms return
e harmonic h =5 with frequency range 2.19 MHz to 2.4 MHz
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Experimental Set-up

Ingredients:
@ small time window of 15 ms with decoupled optics
@ chirped quadrupolar excitation of beam via transverse feedback:
external waveform generator connected to kicker plates
e 12ms long frequency sweep with 1 ms return
e harmonic h =5 with frequency range 2.19 MHz to 2.4 MHz
@ single bunch in PS with a factor 5 smaller incoherent KV tune shift
compared to currently operational LHC beams, off coupling

intensity N=~0.3-0.4x102ppb
transverse emittance €x,y =2.3mmmrad
average betatron function Bx=pBy=16m
average dispersion Dy=3m
momentum deviation spread o5=1x 1073
bunch length By =180ns
synchrotron tune Qs =1/600=1.67 x 1073
KV space charge tune shift AQ!\%// ~0.02
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Quadrupolar Excitation: Chirp

beam resporse (via QPU)

spectrogram for quadrupolar excitation frequency quadrupolar spectrogram for N'=0.291 x 10"
ot 1 R ¥
i . 1 L
2000 7000 ¢ ¥
o ’ 15

: 4. { ]
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= 2 B 4 7
3 < 5 ) H
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g @ 5 w07
3 § 3 s
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=4 £ & <]
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3 2 5 B g
2000 = 2000 =
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04 05
fractional tune f/f,..
v v

o distinct peaks around machine tunes f <0.25 frey
@ frequency bands around twice the machine tunes

o (disregard the constant frequencies, due to instrumentation)
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Measured Quadrupolar Beam Transfer Function

N=0.291 x 102
horizontal dipolar spectrogram vertical dipolar spectrogram quadrupolar spectrogram
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Observations in Spectrum

beam response along chirp, amplitude  I° + Q?
2.541e8

— Qi

Qi

N
=3

=
w

=
=]

o
wn

amplitude (band-filtered along chirp)

52 53 5.4 5.5
excitation harmonic f/f,..

o
wo

Observations:
@ significant peaks around Qy
— dispersive coherent mode?
— influence of chromaticity?
@ envelope band below 2Q, clearly visible
/\ would infer AQJ’E}/ ~0.04-0.05 (factor 2 too large!)
— difficult to extract maximum shift, always many peaks (chromaticity?)
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quadrupolar beam transfer function:
averaged shots for Q, = 6.18 and Q, = 6.24
1e8

quadrupolar beam transfer function.
averaged shots for Q, = 6.18 and Q, = 6.22
18

Tune Scan: BTFs Averaged over Shots

quadrupolar beam transfer function:
averaged shots for Q, =6.18 and Q, = 6.21
le8
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@ @ @
3 3 3
Z08 £08. Zos8
3 s 3
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excitation harmonic f/f,.,
(a) Qx=6.18, Q, =6.24

quadrupolar beam transfer function:

(b) Qx=6.18, Qy=6.22

quadrupolar beam transfer function:

(c) Qx=6.18, Qy =6.21

quadrupolar beam transfer function:

averaged shots for Q, ~6.15 and Q, = 6.2 averaged shots for Q, - 6.18 and @, = 6.19 averaged shots for Q, = 6.19 and @, = 6.19
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(d) Qx=6.18, Q) =6.20

B 3
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(e) Qx=6.18, Qy =6.19
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... simulations?



Dispersive Coherent Mode

[ bunched [ transv. distr. [ synchrotron motion [ dispersion [ chromaticity ]

[ yes [ KV (uniform) [ yes [ yes [ no ]
Spectrum of o — o @ experimental parameters (here
Q. | | Q, 20 20, N=4x ]_O11 ppb)

0.0010
@ evident quadrupolar betatron
bands below 2Qy,y

0.0008

0.0006

@ coherent dispersive mode
slightly below Q, (shifted by
space charge!)

0.0004

Spectral amplitude

0.0002

0.0000
0.0

o1 W2 03 04 05 — however, only one peak is seen
actional quadrupolar tune
as opposed to experiment...
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Including Chromaticity

l bunched [ transv. distr. [ synchrotron motion [ dispersion [ chromaticity ‘

l yes [ KV (uniform) [ yes [ yes [ yes ‘
Spectrum of ¢? — o? ] eXperimental parameters (here
0.005 @ l |Q,/ 20| 20y N=4x1011 ppb)
0.004 @ evident quadrupolar betatron

bands below 2Qy,,

o
o
S
@

0002 @ coherent dispersive mode
slightly below Qy (shifted by
space charge!)

Spectral amplitude

0.001

0.000
0.0

O o quagrer e % — however, only one peak is seen
as opposed to experiment...

— including natural chromaticity (Q =-0.83Qy and Q) = -1.12Q):

o broadens dispersive peak (here FFT undersamples sidebands)

o produces additional peaks, shifted dominant peak
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Including Chromaticity

l bunched [ transv. distr. [ synchrotron motion [ dispersion [ chromaticity ‘

l yes [ KV (uniform) [ yes [ yes [ yes ‘

Spectrum of ¢? — o? ] eXperimental parameters (here
o0s @ | |Qv 0| 0 N =4x10ppb)

0004 @ evident quadrupolar betatron
bands below 2Qy,,

o
o
S
@

0002 @ coherent dispersive mode
slightly below Qy (shifted by
space charge!)

Spectral amplitude

0.001

0.000
0.0

O o quagrer e % — however, only one peak is seen
as opposed to experiment...

— including natural chromaticity (Q =-0.83Qy and Q) = -1.12Q):

o broadens dispersive peak (here FFT undersamples sidebands)

o produces additional peaks, shifted dominant peak

NB: simulations ran with 10 x 10% macro-particles on 150 longitudinal slices across the RF bucket (=80m)
where space charge is solved on 128 x 128 grids (no significant transverse difference between 2.5D / 3D PIC)

24 of 28 Adrian Oeftiger Quadrupolar Mode Measurements



Detailed Dispersive and Betatron QPU Spectrum

Spectrum of ¢? — o7 Spectrum of o2 — o2
le-8 le-9
14 AQC=0.0267 AQS=0.0267
Q. 27 =0.0267 ;" =0.0267 2Q, 20,
12 AQ;“=0.0335 AQ;J=0.0335
FFT FFT
€10 .. Sussix 2 . ? . Sussix
3 3
2 23
gos g
& ©
fos6 £ |
o "] |
@ @
S04 \ / & y
1
i, l ] | ] J L
st 1L A Lty ol 1 i I
0.15 0.16 0.17 0.18 0.19 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Fractional quadrupolar tune Fractional quadrupolar tune
(a) dispersive part (b) betatron part

@ Sussix tune analysis reveals regular sideband structure around
dispersive mode (blue peaks)

@ chromaticity also affects betatron spectrum, additional peaks distort
betatron band (e.g. vertical extending beyond 2Q,)

— with finite chromaticity, measuring betatron band width seems
intricate
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just giving it a try... Measurement vs. Simulation

quadrupolar beam response

—— measurements
simulations
508
KA
()
Sos6
=4
€
So4 A* ;
4
g '\ h~
7o A I
y * ' I "
0.0 § S

0.0 0.1 0.2 0.3 0.4 0.5
Fractional quadrupolar tune
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just giving it a try... Measurement vs. Simulation

quadrupolar beam response

—— measurements | | T
simulations Q) Q
—_ spread 1 spread
3: 08 coh: dISD./ 1
o, mode (+Q')
[}
Sose | .
E= | ' not
o | physical
€ H
504 M :
E ]
ﬁ { /)
3 \|
M
’ * ! i i
0.0 MELTA] :
0.0 0.1 0.2 0.3 0.4 0.5

Fractional quadrupolar tune

@ horizontal quadrupolar betatron band below 2Q, = 0.36: similar width
e vertical quadrupolar betatron band (different Q) in simulation and
experiment): similar width
— chromaticity seems to explain larger width of betatron bands (~factor 2)
w.r.t. computation from 2D envelope equations (without dispersion)
@ coherent dispersive mode peak at same frequency
— width and sidebands closer to measurements (than without chromaticity)
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3. Applications:

(b) PS injection oscillations (2018)




Injection Oscillations in QPU

quadrupolar spectrogram for N=0.878 x 10'? Observations:

@ coherent dispersive modes
around dipolar tunes Q. =6.19
and Q,=6.23

o here transfer line into PS
corrected for dispersion
mismatch
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o
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o
£

600

400

turn from QPU signal start
o
o

(cf. Vincenzo Forte's poster)
— oscillation about both Dy and
Dy, nominal settings only Dy

200

0.2 0.3 . ni 1 1
o e @ injection into strongly coupled
optics
204 21.0 21.6 222 22.8 23.4 240 246 252 — Chernin's Odd enve'Qpe

log of spectrum

modes Qy — Qx, Qy+ Qy visible
@ even envelope modes gone
< 50turns, difficult!
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Summary and Outlook

In conclusion:

@ development of quadrupolar pick-up as powerful diagnostic tool

— for space charge also in bunched beams
— injection mismatch (betatron, dispersion, coupling)

@ coherent dispersive mode identified as strong quadrupolar spectral
component (especially for injection oscillations)

o chromaticity significantly impacts quadrupolar spectrum:

o broadens betatron bands = complicates estimation of AQ?}/
o shifts coherent dispersive mode and creates sidebands

Next steps for ongoing studies:
o further investigate injection oscillations and spectrum
o infer AQ!E},/ with vanishing chromaticity in PS
o dedicated space charge experiments (e.g. resonance studies)

= theory for chromaticity impact on quadrupolar eigenmodes?
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Thank you for your attention!
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TFB: Schematic Plan

One of the two planes configuration

frozes

DSP board schematic

Revolution
Harmonics
Notch

Main C timings

Excitation

Exitation
Control

tixtoop  566.000

Conditionsl
inverter

T

Detection

ices | PATFB-DSPU-H-NEW

Selected PU signal before processing

Invert Out 2
Inverter configured
in 'SPECIAL" group

Tune G
TFB Gain FG ——|
Betatron phase FG ——»|

BLU offset F6 ——|

Excitation Sum
B8Q excitation
Rev clock
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TFB: Impact of Orbit

Set up a local bump through the TFB and measure the induced beam
signal on the plates (effectively a BPM):

[ [ ) e ) 208
a7 e = La00 070917 1622461 =
B
a IR
= o S
J0 Pl S : \
H s : N
e b .
- B o] .
,~ : .
el | «
E B9 T LI S !
sm

07/09/2017 18:26
& 161202

By scanning the orbit location one can minimise the difference

orbit scan through TF8 (section 97)

correlation of plate signal difference with beam signal

signal:

correlation of plate signal difference with beam signal

W @ ooy ge s w o osmsm

residual of plate signal difference [a.u.]

g 2 O
xorbit at pick-up 97 [mm]

G

iy =3 G

g 7 O
xorbit at pick-up 97 [mm]

Adrian Oeftiger

Quadrupolar Mode Measurements



TFB: Static Quadrupole on h=1

e TFB pulsing at fiey becomes a static quadrupole to the beam
@ varying the phase of the pulsing RF quadrupole changes the tune

Impact
Influence of TFB on/off (in anti-symmetric quadrupolar mode) Tune Influence of TFB (in anti-symmetric quadrupolar mode)
on centroid tunes (measured via all 43 PS BPMs) with respect to TFB phase

saosp s R A Tl At aenn e e o .
5 620 o a0 et
< <
o . .. @ TBon o200
o o T ot
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33 of 28 Adrian Oeftiger O T Ve ——



TFB: Quadrupolar Chirp

0.6 — 400
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£ I L
—0.6 L 0
0 10 20 30 40 50 5.0 51 5.2 5.3 5.4 5.5
OASIS sampling points +3e4d harmonic

@ top and bottom plates oscillate together in anti-phase to right and
left plates of transverse feedback

— quadrupolar RF excitation (anti-symmetric mode)
o frequency swept during BTF measurement: 2.19 MHz to 2.4 MHz
— harmonic 5 to 5.5 (PS revolution frequency frev = 437kHz)
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Extracting the Beam Response...

(a) FFT across up-chirp time is not
such a useful idea...

16lell

FFT spectrum over chirp

0.2 0.3
fractional tune f/f,e.
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X bseam response along chirp, amplitude / I° + Q?
e

N
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band-filtered amplitude along chirp
-
)

o
o

51 52 53 54 55
excitation harmonic f/ f,..

o
5]

(b) ... instead project and band filter
along local excitation frequency
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Approach: In-phase and Quadrature Components

Take

a) QPU time signal Sqpuy(?)

b) excitation signal Sexc(f) (sine wave with increasing frequency)
c) 90 deg shifted excitation signal Cexc(?) = Sexc (D]p—¢p+90deg

Assume immediate beam response to chirp:
@ correlation: find excitation start in Sqpy(#) by correlation with Sexc(f)
@ demodulation of measured QPU time signal into

I(t) = SQpu (1) - Sexc(?) (in-phase component)
and  Q(#) = Sqpu (1) - Cexc (1) (quadrature component)

@ band filter original Sqpy(#) around time-varying excitation
frequency by low pass filtering I(f) and Q(¢)

@ amplitude of beam response along chirp amounts to v/I2(f) + Q2(¢)
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Simulations for Tune Scan

Simulations with KV beams for N =1.2 x 1012 confirm theory:

fixed Q, =6.22, N=1.2x 10%2 fixed Q, =6.22, N=1.2x10"

a 4
n 12.44 | Al o s 3
g o g 2
21242 ¢t % 1|
o © |
21240 | g 0
E : - o—-1F}
21238 | : o o simulations £ 5|
v — Q_ (theory) %
12.36 ‘ Q. (theory) 3 =3}
i ‘ . ‘ : _a ‘ ‘ . | |
6.20 6.21 6.22 6.23 6.24 6.20 6.21 6.22 6.23 6.24
@ Q

— r.m.s. equivalent Gaussian beams (with same o, like KV beams)
exhibit same quadrupolar tunes as KV

/\ Gaussian spectra broaden quickly
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Intensity Scan

With slightly split tunes, approach full coupling by increasing bunch
intensity:

Q.=6.22, Q,=6.23 Q.=6.22, Q,=6.23

90
85
80 |
75 |
70 |
65 |
60 |
55 }
50 }
45

12.45 |
12.40 |

12.35 |

+,0n

Q.0
12.30 noff
Qy,off

envelope tunes

OFRNWRARUIONO

coupling parameter D

eigenmodes rot. angle [deg]

00 05 10 15 20 00 05 10 15 2.0
N [10'? ppb] N [10" ppb]

=>  scan space charge tune shift AQxK_},/ and verify theory
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Envelope Equations

Envelope equations of motion (e.o.m.)

" Gi geo KSC 5
T, + Ke($)ry— ——— =0 , a
O3 2(re+ry) (52)
2 SC
€ K
ry + Ky (s)ry - y'g;O - =0 (5b)
ry 2(rx+1y)
for transverse r.m.s. beam widths ry, =0y, have equilibrium
2
325 6‘Jc,geo KSC
—Txm——3— — =0 , (6a)
R Tim  2(Txm+Tym)
2 2 SC
R < S = (6b)
,Mm -
RT3 20rem + Tym)
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Linear Perturbation in Smooth Approximation

Constant focusing channel

2
1 Qxy
Kx,y =5 = ? = const (7)
X,y

gives linearised e.o.m. for perturbation around equilibrium r=ry +dr

d? (61 __[xx xsc) Ory (8)
ds2 \6ry)  \ksc x, ) \dry,
—_——

=(x)

Q2 20y y+30
Kyy =4t — —2—2%k

C
with R Ty (9)

. sc
KSC = 3,70,
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Definitions
Coupling Parameter

SRR Q- . 3(&_2)

D= =4 (Ox+0y))"+ = (10)

2KsC KSCR? 2\ox oy

Rotation Into Decoupled Eigensystem

1
tan(a) = o [Ky — Ky + /41<§C +(ky —Kx)z]
=D+V1+D?

(11)
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Incoherent Tune Shifts

KV Space Charge Tune Shift

A =— 12
Qx,y 40y y(0x+0y)Qxy (12)
with KSC=__ 9% (13)

2meo fy? poc

R.m.s. Equivalent Gaussian Space Charge Tune Spread

linearised Gaussian e-field = twice r.m.s. equivalent KV e-field

= max{aQ¥ =2a0%Y (14)
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Gaussian vs. R.m.s. Equivalent KV

sy

15
AR
\
WA 10 AR
T _ ORI 10 -
ATRERRIR
s § SRR E
T S
o 2 R 0 2
= W Wi =
A N R N
R -5 W g
e SR -10
DS “10 ey
15 -20

(a) Gaussian beam (b) r.m.s. equivalent KV beam
equivalent distributions with same o,y

Figure: Electric fields in r.m.s.
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Incoherent Tunes and R.m.s. Equivalence

Incoherent tune spread of a coasting, transversely Gaussian distribution:

6.28 :
6.27 % % bare tune Q

¢ ¥ r.m.s. equivalent Q <V
6.26 | |* % min. Gaussian Q¢

6.25
< 6.24
6.23
6.22
6.21

6.20 ‘ ‘
6.18 6.20 6.22 6.24
Q.

i 4.0

2.0

fraction of particles [%]

0.0
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Quadrupolar Mode Formulae

Quadrupolar Mode Tunes (General Formula)

2

R
Qi:7[Kx+KJ’i‘/4K%C+(KJ’_KX)2 (15)
2 on . KR | 3(0y oy VI+D?
—Z(Qx+Qy) > |1+ + ¥
(0x+0y) 4\oyx 0y 2
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Quadrupolar Mode Formulae

Off-resonance D > 1 With Round Beam

Q- =20y 218Q4M (162)

Q- ZZQx_§|AQ!C<V| : (16b)

for Qy > Qy otherwise exchange x — y
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Quadrupolar Mode Formulae

On-resonance D =~ 0 With Round Beam

Q+ =2Qo—18QKY| (17a)

Q- =200-518Q%| . (17b)

for Qo= Qx = Qy and AQKY = AQKY = AQ}Y
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QPU Simulations in SPS

simulation parameters:
machine: SPS at injection
Y=27.7

€x =€y =2.5mm-mrad
Np=1.25x1011

512 — 2048 turns

2.6 x 10° macro-particles

longitudinally matched Gaussian-type distribution

betatron mismatch by 10% in both x,y

!

injection oscillations
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QPU Spectrum: Only Betatron Mismatch

need beam mismatched to both f, [, to see clear peaks

1 0_1 Qo Qyﬂ 2Qy ZQyO

1072

P [a.u.]
|_\
o
w

= 2Qx0, 2Qyo from undepressed envelope oscillations

= including synchrotron motion: same spectrum (no coupling!)
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QPU Spectrum: Include Dispersion

smooth approximation: constant Dy =2.96 around the ring

1 0.1 Qo Qyo 2Q, ZQ,UO

107

P [a.u.]
=
o
w

0.0 0.1 0.2 0.3 0.4 0.5
f/fTCl'

= peak at Q4o comes from dispersion
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Reason for Dispersion Peak

0 x(iturn) = \/<x?>beam - <xi>2beam

with  x;(iurn) = \/ Bx €35 €082MQx0iurn + Vo) + D1 6
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Reason for Dispersion Peak

0 x(iturn) = \/<x?>beam - <xi>2beam

with  x;(iurn) = \/ Bx €35 €082MQx0iurn + Vo) + D1 6

= xi= ...COSZ(ZT[Qx()itum +..)+..Dyx6;-cosaQyolturn +...) + ...

...€082m2Q 0 Iturn +-..)

due to:  2cos?(a)=cos(2a)+1

i.e. only for Dy #0 = peak at Qyg
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QPU Spectrum: Include Synchrotron Motion

synchrotron motion couples to betatron motion through non-zero
Dy =29.6m (smooth approximation!)

10* — ‘
100 1 I
10'1 1 SOOI NI
10
107
~ 10"
107
10°

[a.u.]

0.0 0.1 0.2 0.3 0.4 0.5
f/fTE'L'

= peak separation at Qg from synchrobetatron coupling
@ Q;=0.017 at injection for V =5.75MV
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QPU Spectrum: Slower Synchrotron Motion

synchrotron motion couples to betatron motion through non-zero
Dy =29.6m (smooth approximation!)

Q.o Qo 2Q, 2Qy

0.0 0.1 0.2 0.3 0.4 0.5
f/fTE'L'

@ Q;=0.007 changing y =17.95 — 25 (while y =27.7)

—> peak separation shrinks
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Reason for Peak Separation with Qj

x? =..+..Dy0;- cosaQyoltyrn +...) + ...

with  §;(itumn) = 5icos(2aniturn +...)
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Reason for Peak Separation with Qj

x? =..+..Dy0;- cosaQxoiturn +...) + ...

with  8;(iurn) = 67 €082 Qgiturn +...)

= X7 =...+... COS(2TQxpiturn +-..) COSQTQgiryrn +...) +...

€027 (Qx0—Qs) iturn +---;FFCOS(2”(QXO +Qs)iturn+...)

due to:  2cos(a) cos(f)=cos(a—p)+cos(a+pf)

i.e. for Dy #0 and Qs #0:

one peak at Qy = two peaks located at Qo + Qs
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PS: Bunched Beam with SC ( )

0.0010

0.0008

0.0006

Spectral amplitude

)
o
S
S
IS

0.0002

0.0000

[ bunched | transv. distr. | synchrotron motion [ dispersion | chromaticity ]

[ yes

[ KV (uniform) ] yes [ yes [ no |
Spectrum of o2 — 2 @ coherent dispersive mode with
o | |Q” | a0 synchrotron motion splits into
two peaks
@ at usual Vg =24kV we have
Qs ~ 1/600
0.1 0.2 0.3 0.4 0.5

Fractional quadrupolar tune
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PS: Bunched Beam with SC ( )

0.005

0.004

0.003

0.002

Spectral amplitude

0.001

0.000
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[ bunched | transv. distr. | synchrotron motion [ dispersion | chromaticity ]

[ yes

[ KV (uniform) ]

yes [ yes [ no |

Spectrum of 0! — o7

o |

| Qy

2Q:

20Q;

0.1

Fractional quadrupolar tune

0.2

0.3

0.4 0.5

Adrian Oeftiger

@ coherent dispersive mode with
synchrotron motion splits into
two peaks

@ at usual Vg =24kV we have
Qs ~ 1/600

@ at (unrealistic) Vgr =1.5MV
we have Qg = 0.0107

—> two peaks are clearly separated
in quadrupolar spectrum
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