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Abstract 

Machine learning has been applied in many fields in re-
cent decades. Many research articles also presented re-
markable achievements in either operation or designing of 
the particle accelerator. This paper focuses on the simu-
lated orbit correction by neural networks, a subset of 
machine learning, in Taiwan Photon Source. The training 
data for the neural network is generated by accelerator 
toolbox (AT). 

INTRODUCTION 
The Taiwan Photon Source (TPS) [1,2] is designed as a 

3 GeV synchrotron light source, encompassing a 518.4 m 
circumference. The lattice structure of the storage ring 
consists of 24 Double-Bend Achromat (DBA) cells, 
providing 18 short straight sections (7m) and 6 long 
straight sections (12 m). Three long straight sections, 
located at 3-fold symmetric position, adopt symmetrical 
double mini-y lattice in which a set of quadrupole triplet 
is installed in the middle of the long straight section to 
accommodate double undulators. Figure 1 shows the 
optical functions of the double mini-y lattice for 1/3 TPS. 
 

 
Figure 1: Optical functions of the double mini-y lattice 
for 1/3 TPS storage ring. 
 

Each DBA cell is outfitted with 7 beam position moni-
tors (BPMs). Two BPMs installed in the injection section 
are unused. There are six additional BPMs installed in 
three double mini-y sections. The TPS storage ring em-
ploys 72 horizontal and 96 vertical corrector magnets to 
define the electron golden orbit, which is monitored by 
172 BPMs. In routine operation for user experiments and 
maintaining long-term orbit stability, each insertion de-
vice is equipped with orbit feed-forward table to compen-
sate itself 1st and 2nd order residual integral fields, while 
gap or phase of the insertion device are moving. Addi-
tionally, TPS storage ring is also equipped with a fast 

orbit feedback systems involving 96 fast correctors (FC) 
in horizontal and vertical direction, and the RF feedback 
system. 

Figure 2 shows the positions of BPMs, slow orbit cor-
rector magnets (trim coil wound on the sextupoles) and 
fast orbit corrector magnets in a DBA cell. 
 

 
Figure 2: DBA cell in TPS storage ring. Dipole is 

printed in red colour. Quadrupole is in blue colour. Sex-
tupole is in yellow. Slow orbit corrector magnets are the 
trim coils wound on the sextupole magnets. 

In daily operation for user experiments, the orbit cor-
rection and control uses a measured orbit response matrix 
and singular value decomposition (SVD) algorithm. 
BPMs are used to monitor the electron beam’s orbit, ap-
ply SVD to calculate the pseudoinverse of the orbit re-
sponse matrix, the desired strengths of the corrector mag-
nets can be derived, then apply the calculated current to 
corrector magnets to bring the electron orbit closer to the 
target orbit.  This traditional method is rooted in physics 
and well-established principles of beam dynamics in par-
ticle accelerators. However, applying machine learning to 
particle accelerators is growing. D. Schirmer [3, 4] pub-
lished a paper talking about orbit correction with machine 
learning at the synchrotron light source DELTA. We also 
try to create a neural network model to do orbit correction 
to explore the benefits and drawbacks of utilizing ma-
chine learning for orbit correction in TPS storage ring. 

MACHINE LEARNING 
Machine learning (ML) is a subset of artificial intelli-

gence (AI). It can enable computers to learn from large 
amounts of data and make predictions or decisions with-
out being explicitly programmed. ML can be roughly 
classified into three types: supervised learning, unsuper-
vised learning, and reinforcement learning. In supervised 
learning, the model is trained on labeled datasets, mean-
ing that the input data is paired with output or target val-
ues. The goal of supervised learning is to search for a 
mapping from inputs to outputs. Once adeptly trained, the 
model can make precise predictions or classifications 
when encountered with new or unseen data. In unsuper-
vised learning, the model works with unlabeled data and 
learns patterns without predefined outcomes. It’s often 
used for clustering and dimension reduction. In rein-
forcement learning, agents learn by interacting with an 
environment to achieve specific goals. 

 ___________________________________________  
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Neural network, a subset of machine learning, is a 
computational model inspired by the human brain’s struc-
ture. It can assist us to find out the rules or relationships 
between the input and output of a nonlinear or complex 
system. A typical architecture of the feedforward neural 
network is shown in Fig. 3. For simplicity, we will use 
one hidden layer as an example. The circles in each layer 
stand for neurons, called nodes. The linking arrows in-
between layers show the signal transduction pathways. 
The input layer is used to feed data. The output layer 
gives us the predictions by the neural network. The hid-
den layer is the main processing units in the neural net-
work to process the data. Usually in each neuron, it exe-
cutes two things: (a) sum the data passed from the previ-
ous layer multiplied by a weight matrix W and then add a 
bias value B, (b) pass the weighted sum of the data to an 
activation function f to make a transformation. After that, 
the transformed data is sent to next layer. 

 
Figure 3: Scheme of a typical feedforward neural network 

model, considering input, output and one hidden layer 

The signal transduction from input layer to the hidden 
layer can be formulated as the following equation: 

𝐻 = ൦ℎଵℎଶ⋮ℎ൪ = 𝑓ሺ𝑊ଵ𝑋 + 𝐵ଵሻ = 𝑓 ൮൦𝑤ଵଵ 𝑤ଵଶ𝑤ଶଵ 𝑤ଶଶ ⋯ 𝑤ଵ⋯ 𝑤ଶ⋮ ⋮𝑤ଵ 𝑤ଶ ⋱ ⋮⋯ 𝑤൪ × ൦
𝑥ଵ𝑥ଶ⋮𝑥൪+ ൦𝑏ଵ𝑏ଶ⋮𝑏൪൲, 

 
resulting from the following equation to give the predic-
tion of Y. 

𝑌 = ൦𝑦ଵ𝑦ଶ⋮𝑦൪ =𝑊ଶ𝐻 + 𝐵ଶ = ൦𝑤ଵଵ 𝑤ଵଶ𝑤ଶଵ 𝑤ଶଶ ⋯ 𝑤ଵ⋯ 𝑤ଶ⋮ ⋮𝑤ଵ 𝑤ଶ ⋱ ⋮⋯ 𝑤൪ × ൦
ℎଵℎଶ⋮ℎ൪+ ൦𝑏ଵ𝑏ଶ⋮𝑏൪, 

 
where X is the input data, Y is the output of the neural 
network. H stands for the output from the hidden layer. 
W1 and W2 are weight matrices. B1 and B2 are bias vectors.  
The subscript m, q, and n are the neuron number in the 
input layer, hidden layer, and output layer, respectively. f 
is an activation function. Here, we assume the activation 
in the output layer is linear. Figure 4 shows commonly 
used activation functions. 

Neural Network Workflow 
The flow chart of the neural network application is the 

following:  
1. Data collection: Scaling and normalizing data, 

then splitting data into training, validation and test 
sets 

2. Build a neural network: Select an appropriate neu-

ral network architecture (e.g. feedforward, recur-
rent, convolution) based on problem type (e.g. re-
gression, classification, et al.), and assign the num-
ber of layers, neuron number in each layer, activa-
tion function (e.g. sigmoid, tanh, ReLu, etc.);  

3. Compile the model: Specify the loss function (e. g. 
mean square error, etc.), optimizer (e.g. adam, sgd, 
etc.) that adjusts the model’s weights and bias,  
evaluation metrics (e.g. accuracy, mean absolute 
error) to monitor during training;  

4. Train the model: Specify the batch size, the num-
ber of epochs (training iteration times), and using 
training set of data;  

5. Evaluate the model: Evaluate the model’s perfor-
mance by using validation data set;  

6. Visualize the training progress: Plot training and 
validation loss over epochs to assess how well the 
model is learning.  

7. Hyperparameter tuning: Training model with dif-
ferent learning rates (step size during training), 
batch size (number of data sets used in each itera-
tion of training, epoch (training times of passing 
data sets through network model) to avoid underfit-
ting and overfitting, number of layers, neurons per 
layer;  

8. Make predictions: Use the trained model to make 
prediction on new data.  

9. Model deployment: If the trained model performs 
well, save it for deployment.  

Figure 4: Basic activation function used in neural network 

Neural Network Training 
Before starting the training process, the weight matrix 

elements are randomly assigned. During the training pro-
cess, the optimizer will update the weight matrix and bias 
values to minimize the loss function, which is defined as 
the square of the difference between the outputs of the 
neural network and target values. 

 
Figure 5: Flow chart for training neural network model. 

67th ICFA Adv. Beam Dyn. Workshop Future Light Sources FLS2023, Luzern, Switzerland JACoW Publishing

ISBN: 978-3-95450-224-0 ISSN: 2673-7035 doi:10.18429/JACoW-FLS2023-WE4P19

B - Ring-based Light Sources

WE4P19

189

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



SIMULATION DETAIL 
Accelerator Toolbox (AT) [5] is used to generate train-

ing data. Three-thousand sets of 72 horizontal correctors 
(HC) strengths within ± 2.5 rad are randomly assigned 
with the matlab [6] command rand. Using a for-loop 
selects a set of 72 random numbers to assign the strengths 
of 72 corrector magnets respectively, followed by using 
the MML command getx to get the orbit. Eventually, we 
have 3000 different orbits associated with 3000 sets of 
different strengths of the 72 corrector magnets.  

Python is used to develop the machine learning appli-
cation. Tensorflow [7] and keras [8], machine learning 
packages, are used to build the neural network model. 
Scikit-learn [9], data mining toolbox, is used to pre-
process data, e. g. normalization and split data into train-
ing and validation sets of data. For TPS orbit correction in 
the horizontal plane, the number of input neurons is 172 
BPMs, number of output neurons is 72, number of hidden 
neurons is 172. Figure 6 shows the loss function for train-
ing and validation sets of data. The loss function of the 
training and validation sets of data converges after several 
training iterations. That means no overfitting and under-
fitting phenomenon is observed. After training, the trained 
model is saved with the keras package. Figure 7 shows 
the accuracy of the trained neural network. 

Figure 6: Loss function for training and validation sets of 
data during training process. 

 
Figure 7: Accuracy of the trained neural network. (a) Test 
set of input data (172 BPMs’ data), (b) Difference of the 
corrector strength between the prediction from the trained 
neural network (NN) and AT simulation. (c) Corrector 
strength: Red is by AT simulation; blue is the prediction 
by the trained neural network (NN). 

In the following, we are going to verify the perfor-
mance of the trained neural network on orbit correction in 
AT simulator. Figure 8 shows the implementation of the 
neural network on orbit correction. The unknown orbit 
distortion shown in red color in Fig. 9 (b), generated by 
shifting 249 quadrupoles randomly within ± 3 m in 
horizontal plane with the AT command ‘setshift’, is feed 
into the trained neural network. The trained network will 
predict one set of 72 corrector strengths. Using the pre-
dicted corrector strengths to correct the orbit distortion in 
AT simulator and iterate three times. The corrected orbit 
by the trained neural network is shown in Fig. 9 (b). 

 
Figure 8: Implement neural network for orbit correction. 
 

 
Figure 9: (a) Misalignment quantities of 249 quadrupole 
magnets within ± 3 m to generate orbit distortion in TPS 
storage ring simulated by AT. (b) Orbit correction by 
neural network: Red is the orbit before correction (BC), 
green, magenta, and blue are the orbit after correction 
(AC), iterate 3 times (AC-1, AC-2, AC-3). 

SUMMARY 
This paper demonstrates the preliminary results of the 

machine learning application for the orbit correction at 
TPS storage ring by AT simulator. Even though there is 
minor residue of orbit distortion after orbit correction by 
the neural network, it did show great potential to use a 
neural network for orbit correction. There is still room for 
improving the performance of the neural network. The 
next step will to be to apply machine learning on the real 
machine. Detailed machine studies need to verify the 
performance of the neural network for orbit correction at 
TPS storage ring. 
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