Paper | Title | Page |
---|---|---|
MO3B4 | Generating High Repetition Rate X-ray Attosecond Pulses in SAPS | 22 |
|
||
Attosecond, which refers to 10-18 seconds, is the timescale of electron motion within an atom. Accurate observation of electron motion helps deepen the understanding of microscopic quantum processes such as charge transfer in molecules, wave packet dynamics, and charge transfer in organic photovoltaic materials. To meet the needs of relevant research, the South Advanced Photon Source (SAPS), currently in the design phase, is considering the construction of an attosecond beamline. This paper presents relevant research on achieving high-repetition-rate coherent attosecond pulses on the fourth-generation storage ring at SAPS. Realizing attosecond pulses in a storage ring requires femtosecond to sub-femtosecond-level longitudinal modulation of the beam, and the modulation scheme needs to consider multiple factors to avoid a significant impact on other users. The study shows that with high-power, few-cycle lasers, and advanced beam modulation techniques, the photon flux of attosecond pulses can be significantly enhanced with a minimal impact on the brightness of synchrotron radiation. Adopting high-repetition-rate lasers and precise time delay control, the repetition rate of attosecond pulses at SAPS can reach the megahertz level. Currently, the design wavelength range for attosecond pulses covers the water window (2.3-4.4 nm), which is "transparent" to water but strongly absorbed by elements constituting living organisms. This wavelength range has significant application value in fields such as biology and chemistry. | ||
![]() |
Slides MO3B4 [3.400 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-MO3B4 | |
About • | Received ※ 23 August 2023 — Revised ※ 24 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WE4P33 | Design of a 166.6 MHz HOM Damped Copper Cavity for the Southern Advanced Photon Source | 207 |
|
||
Funding: This work was supported by the National Natural Science Foundation of China (12205168). The Southern Advanced Photon Source (SAPS) aims to achieve ultra-low emittances and is expected to adopt low-frequency cavities (< 200 MHz) to accommodates on-axis injection. This paper focuses on the design of a 166.6 MHz HOM-damped normal conducting (NC) cavity for the SAPS. We propose a novel approach to achieve efficient HOM damping by optimizing the lowest frequency HOM and implementing a beam-line absorber in a coaxial resonant NC cavity. Notably, unlike beam-line absorbers for conventional NC cavities, the presence of a large beam tube in a coaxial resonant cavity does not affect the accelerating performance. This enables effective HOM damping while maintaining a high shunt impedance in a NC cavity. The numerical simulation results show that a compact copper cavity with effective HOM damping and excellent RF properties has been achieved. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P33 | |
About • | Received ※ 23 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 01 September 2023 — Issued ※ 02 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |