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Background

Two main ways to generate X-ray pulses by FEL: self-amplified spontaneous
emission(SASE) and X-ray free-electron laser oscillator(XFELO).

The configuration of XFELO:

Development:

2008 Kwang-Je Kim made a proposal for
XFELO.

2010 High-reflectivity high-resolution X-ray
Bragg crystal diffraction.

2012 Haixiao Deng proposed the high harmonic
XFELO.

The new ideas and proposals are still coming
out.

Challenges:

High repetition electron
injector.

Heat loading of the Bragg
reflection crystal mirror.

Crystal mirrors alignment.

Time-consuming numerical
simulation.
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Motivation

The traditional numerical simulation methods (GENESIS+OPC) are time-consuming and
hard for XFELO theoretical research and optimization.

Traditional method:

The combination of GENESIS and
OPC.

Using macro-particle sampling method.

It takes about one month for a
complete tracking.

Time-consuming but more accuracy.

New theoretical model:

The single-pass gain is calculated
theoretically.

Matlab codes for the cavity model.

It takes a few minutes for a fully
simulation.

Saving time but including some
approximations.

The new approach takes few minutes which makes the theoretical analysis of single-pass
gain, power growth, time-dependent laser profile evolution and cavity desynchronism
become more efficiently.
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Theoretical model of FELO

The radiation field inside the cavity for the (n+1)th pass at the entrance of undulator:

En+1 = [En(t)g(t) + δE ]R

Three main steps for FELO new model:

Calculating the single-pass gain theoretically.

Initializing the start-up radiation field.

Simulating the laser power and profile transformation.
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Gain calculation

We take the advantages of electron distribution density function to get the single-pass
gain. The motion of single electron in the phase space (θ, η) is described by the
pendulum equation:

dθ

dz
= 2kuη

dη

dz
= − ε

2kuLu
2 sinθ

The evolution of electron distribution function ρ is governed by the continuity equation

∂ρ

∂z
+ θ̇

∂ρ

∂θ
+ η̇

∂ρ

∂η
= 0

Combining the equations above yields the following partial differential equation

∂ρ

∂z ′
+ η′

∂ρ

∂θ
+ sinθ

∂ρ

∂η′
= 0
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Gain calculation

Assuming the initial condition of electron beam with a Gaussian distribution, the solution
can be found by the method of characteristics1

ρ =
1

2π

1√
2πση′

× exp

{
− 1

2σ2
η′

[
η′cn(z ′;C)− sinθsn(z ′;C)dn(z ′;C)

1− cos2 θ
2
sn(z ′;C)

− η′0

]2}

where C 2 = η′2

4
+ cos2 θ

2
.

Using the law of conservation of energy, the single-pass power gain is

G =
√

mec2K [JJ]ku
−1 I

cβ

1

2π
∑2

1

ε0E0
3/2
〈 ∆η′〉

Taking account of three dimensional effects, we use the equivalent formula

σ′E
E0

=

√(
σE

E0

)2

+

(
ελu

4λβ

)2

1Boscolo I, et al,. IEEE Journal of Quantum Electronics, 1982, 18(11): 1957-1961.
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Cavity model

The reflectivity of crystal mirror is depend on lots of factors. In order to illustrate the
main properties of Bragg reflection, we assume the crystal to be semi-infinite and
non-absorbed, and the symmetry Bragg backward scattering is chosen.

In this way, the complex reflectivity is
simplified as

r(y) =


y −

√
y 2 − 1 if y > 1

y − i
√

1− y 2 if |y | 6 1

y +
√

y 2 − 1 if y < −1

where y = 1
|χH |

[
2(E−EH )

EH
+ χ0

]
, EH is

the Bragg energy and χ0 and χH are
Fourier components of the dielectric
susceptibility of the crystal.

20 30 40 50 60 70 80 90 100
∆ E (meV)

0

0.5

1

R
ef

le
ct

iv
ity

-4

-2

0

Ph
as

e

Figure: The complex reflectivity of Bragg
crystal at various incident photon energy
deviation from Bragg energy.
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XFELO parameters

A typical XFELO is studied using parameters shown in Table bellow:

Parameter Value Unit
Beam energy E0 7 GeV
Energy spread σE 1.4 MeV
Normalized emittance εn 0.2 µm-rad
Peak current I 10 A
Electron bunch length σt 1.0 ps
Undulator period λu 17.6 mm
Number of undulator Nu 3000
Laser wavelength λ 0.1 nm
Cavity loss 5%
Bragg mirror reflectivity R 94%
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Electron distribution and gain function

The electron is trapped in the “bucket” and transform its energy to light like in the IR
FELO case. However, the bucket which traps the electron becomes flatter, and the
energy modulation is smaller due to the relative larger electron energy.

Figure: The electron density distribution function in phase space of one slice.
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Light power and profile

The radiation in the cavity start from shot noise which has significant fluctuations,
becomes smooth as passing number increases, and finally reaches saturation and remain
steady state.
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Figure: Snapshots of output radiation pulse for a typical X-ray FELO at 1.0 Å. The top and the
bottom row show the longitudinal pulse temporal profile and corresponding spectrum respectively.
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Light power and profile

The radiation in the cavity start from shot noise which has significant fluctuations,
becomes smooth as passing number increases, and finally reaches saturation and remain
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Figure: Snapshots of output radiation pulse for a typical X-ray FELO at 1.0 Å. The top and the
bottom row show the longitudinal pulse temporal profile and corresponding spectrum respectively.
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Light power and profile

The radiation in the cavity start from shot noise which has significant fluctuations,
becomes smooth as passing number increases, and finally reaches saturation and remain
steady state.

Figure: The enhancement of output laser peak power with various passes Npass .

Kai Li (SINAP) XFELO March 6, 2018 12 / 20



Light power and profile

The radiation in the cavity start from shot noise which has significant fluctuations,
becomes smooth as passing number increases, and finally reaches saturation and remain
steady state.

Figure: The enhancement of output laser peak power with various passes Npass .
Kai Li (SINAP) XFELO March 6, 2018 12 / 20



Cavity desynchronism

The complex reflectivity of the crystal mirrors causes an extra phase shift of optical field
and leads to the pulse slides backward. In the theoretical model, the electron beam is
constantly delayed a distance to overlap with the optical field.
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Figure: The output laser energy as a
function of desynchronism.

Figure: The electron beam and light power
profile.
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Infrared FELO Light power and profile

The radiation in the cavity start from shot noise which has significant fluctuations,
becomes smooth as passing number increases, and finally reaches saturation and remain
steady state.
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Figure: Snapshots of output radiation pulse for a typical infrared FELO at 1.6µm. The top and
the bottom row show the longitudinal pulse temporal profile and corresponding spectrum
respectively.
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Figure: Snapshots of output radiation pulse for a typical infrared FELO at 1.6µm. The top and
the bottom row show the longitudinal pulse temporal profile and corresponding spectrum
respectively.
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Infrared FELO Light power and profile

The radiation in the cavity start from shot noise which has significant fluctuations,
becomes smooth as passing number increases, and finally reaches saturation and remain
steady state.

Figure: The enhancement of output laser peak power with various passes Npass .

Kai Li (SINAP) XFELO March 6, 2018 15 / 20



Infrared FELO Light power and profile

The radiation in the cavity start from shot noise which has significant fluctuations,
becomes smooth as passing number increases, and finally reaches saturation and remain
steady state.

Figure: The enhancement of output laser peak power with various passes Npass .

Kai Li (SINAP) XFELO March 6, 2018 15 / 20



Primary ideas

Motivation: the traditional way of tracking each macro-particle is time-consuming.

Solution2:

Solving the electron density partial differential equation to get single-pass gain.

Gain function

G =
√

mec2K [JJ]ku
−1 I

cβ

1

2πΣ2

1

ε0E0
3/2
〈 ∆η〉

Producing the initial electric field by sampling according to its probability
distribution function.

Simulating the evolution of the light power inside the cavity using the single-pass
gain function.

Light power profile evolution equation

En+1(t) = [En(t)g(t) + δE(t)]Rtotal

2Li K, et al., Physical Review Accelerators and Beams, 2017, 20(3): 030702.
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Applications: cascaded XFELO

Utilizing FEL oscillator with multi-stage undulators enables gain cascading in a
single-pass, making it possible to achieve shorter single pulse lengths, higher peak power,
and even higher pulse energy than normal FEL oscillator.3

Figure: The schematic view of cascaded
FELO. Figure: The gain of cascaded FELO

calculated by new model.

3Li K, et al., Physical Review Accelerators and Beams, 2017, 20(11): 110703.
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Applications: XFELO design at SCLF

The quasi-CW, FEL quality electron beams at Shanghai Coherent Light Facility (SCLF)
is suitable to consider an X-ray free electron laser oscillator (XFELO) operation.

Figure: Schematic view of XFELO for SCLF.

Figure: Performances of XFELO for SCLF.
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