CONTRIBUTION TO "THE HIGH BRIGHTNESS PHOTO-INJECTOR ELECTRON BEAM OF THE APS LINAC" PRESENTED BY YINE SUN AT THE 2018 FUTURE LIGHT SOURCE MEETING

THE HIGH BRIGHTNESS PHOTO-INJECTOR **ELECTRON BEAM OF THE APS LINAC**

YINE SUN, W. BERG, J. BYRD, J. DOOLING, D. HUI, S. SHIN, A. ZHOLENTS

Advanced Photon Source Argonne National Laboratory

□ APS Accelerator Complex;

Photo-Injector Linac;
 Linac Extension Area (LEA);
 Interleaving Operation;
 Photo-Injector Beam;

Grief First Experiment in LEA.

APS ACCELERATOR COMPLEX

APS Accelerator Complex;
Photo-Injector Linac;
Linac Extension Area (LEA);
Interleaving Operation;
Photo-Injector Beam;
First Experiment in LEA.

PHOTOCATHODE RF GUN

- LCLS-I type 1.6-cell 2856 MHz Gun:
 - Gun conditioned to 12 MW power (>125MV/m on cathode), 2.5 µs RF pulse and up to 30Hz repetition rate;
 - Maximum dark current per RF pulse is ~150 pC.
- Copper back plate serves as cathode:
 - QE: ~[2-4]x10⁻⁵ at commissioning, currently ~6.5 x10⁻⁵ (2018/2/5: 320 pC with 23 µJ UV laser power).
- Main/bucking solenoid for emittance compensation.

THE APS LINAC PHOTOCATHODE RF GUN (PCG)

- 09/2014: Installed at the APS linac front end:
- 12/2014: Beam commissioning in the linac;
- 03/2016: PCG beam injection into PAR/Booster/Storage Ring.
- 10/2017: Interleaving demonstrated in supporting of APS storage ring top-up operations.

Future Light Source Workshop, Shanghai Yine Sun

ENERGY U.S. Department of Energy laborate

PHOTO-CATHODE DRIVE-LASER

- Nd:Glass Laser composed of both oscillator seed and regenerative amplifier (regen)
- Amplifier pumping using AlGaAs laser diodes (808 nm).
- Typically 3 mJ out of the amplifier at 1053 -0.5 nm, compressed to 2-3 ps with 50% transmission efficiency
- Twice doubled using 2 1-mm-thick BBO crystals (1053→526.5→263.3 nm); maximum overall conversion efficiency: 12%
- Rep rates: 2-30 Hz
- 3% Nd-doped Brewster-cut rods 4-mm diam., 75-mm length
- TEM₀₀ elliptical output

	(mm)	(mm)
C .	0.3700	0.1645
	-0.1093	0.0976

After laser shaping, nominal UV energy on cathode ~25µJ/pulse.

Yine Sun

APS Accelerator Complex;
Photo-Injector Linac;
Linac Extension Area (LEA);
Interleaving Operation;
Photo-Injector Beam;
First Experiment in LEA.

LEA: LINAC EXTENSION AREA

LEA BEAMLINE

- A new beamline utilizes the high brightness photo-injector beam for advanced R&D for accelerator technology and beam physics;
- An experimental area is incorporated into the beamline.

APS Accelerator Complex;
Photo-Injector Linac;
Linac Extension Area (LEA);
Interleaving Operation;
Photo-Injector Beam;
First Experiment in LEA.

LINAC INTERLEAVING OPERATION

- During storage ring top-up operation, most of the time the Linac is needed for ~20 seconds every two minutes to inject the RG2 beam into PAR;
- There is no beam in the linac during rest of the two minutes → PCG beam can be accelerated through and transported to LEA;
- Interleaving Operation of the RG2 and PCG beams in the APS linac.
 If RG1 is providing beam to the LINAC, there will be no interleaving.

LINAC MODIFICATIONS FOR INTERLEAVING

Gate valves for PCG and RG2 beams need to remain open simultaneously.
 – Radiation Safety/Controls systems are modified to allow interleaving operations.

 Beam Trajectory Control: Interleaving operation of four trajectory switching magnets.

Interleaving RF timing, phase, and amplitude.

RG2 AND PCG BEAM TRAJECTORY THROUGH THE LINAC

Same settings for linac quadrupole and steering magnets.

DEMONSTRATION OF LINAC INTERLEAVING OPERATION WITH STORAGE RING IN TOP-UP MODE

APS Accelerator Complex;
Photo-Injector Linac;
Linac Extension Area (LEA);
Interleaving Operation;
Photo-Injector Beam;
First Experiment in LEA.

PHOTO-INJECTOR DESIGN

- Energy: Up to 500 MeV;
 - Nominal energy 425 MeV;
- Energy Spread: 250 500 keV
- Charge: 50 500 pC
- Rep rate: up to 30Hz

- Optimization of the APS photo-injector for high-brightness electron beams:
- Variables include:

variable	range	unit
Gun gradient	[110 ~ 130]	MV/m
Solenoid peak field	[0.2 ~ 0.315]	Tesla
Cathode and solenoid center separation	[0.183 ~ 0.202]	m
Bunch charge	[50, 100, 250, 1000]	рС
Drive laser pulse	[2 ~ 5]	ps
Drive laser size	[0.1~0.8]	mm
Cathode and first accelerating structure distance	[1.12 ~ 2.12]	m
Energy gain in the first acc. structure	[11 ~ 33]	MeV
Energy gain in the next four acc. stuctures	[27 ~ 33]	MeV

Yine Sun 17

CHICAGO

DF Will be the set of the set of

PHOTO-INJECTOR DESIGN

CAPTURE CAVITY LOCATION

 Distance between the cathode and the first accelerating structure optimized for best emittance.

EMITTANCE OPTIMIZATION

 Machine parameters optimized for best emittance at bunch charge [50 –1000] pC; normalized emittance [0.2-1.1] µm.

SOLENOID SCAN: MEASUREMENT AND SIMULATION

Drive laser: σ =0.1mm, σ_t =2.5ps, bunch charge Q=93pC, beam energy ~ 5.5MeV

Analysis of experiment /home/helios/LINAC/daily/2016/04/26/2/PCGun/emit/emit360pC-012 using Raw value							
IdealAlpha = 1.732	051e+00 IdealBe	ta (m) =	2.224452	2e+00	-	2	
xCalibrations = 92.0 92.0	92.0 pixel/mm						
yCalibrations = 116.0 116	.0 116.0 pixel/m	m					
xResolutions = 8.6999999	999999993 8.6999	999999999999	93 8.69999	999999999993	um		
yResolutions = 8.0 8.0	8.0 um						
xSigmaErrors = 0.0 0.0	0.0 um						
ySigmaErrors = 0.0 0.0	0.0 um						
ExcludedFlag1 =							
ExcludedFlag2 =							
ExcludedFlag3 =							
beamEnergy (MeV) = 1.500	000e+02						
betax betaxSig al	phx alphxSig	exNorm	exNormSig	xMismatch	xMismatchSig		
betay betaySig al	phy alphySig	eyNorm	eyNormSig	yMismatch	yMismatchSig		
m m		um	um		um		
m m		um	um		um		
2 14 0 01	1 74 0 00	5 46	0 06	1 00	0 00	-	
2 34 0 00	1 86 0 00	4 64	0.02	1 00	0.00		
2.54 0.00	1.00 0.00	4.04	0.02	1.00	0.00		
			1	í.			
Close Print Print	Export text	Email	SDDS Comm	and			

Sun 20

CURRENT EFFORTS

INTERLEAVING LATTICE OPTIMIZATION:

Installed two new additional quadrupoles to bring the PCG Twiss parameters to match with the RG2 beam.

TAILOR THE SIZE OF THE PHOTO-CATHODE DRIVE LASER FOR DIFFERENT BUNCH CHARGES:

Currently the laser is asymmetric and adjusting the laser beam size requires replacing focusing lens.

REDUCTION OF THE TRANSVERSE WAKE FIELD BY REPLACING THE SAGGED LINAC ACCELERATING STRUCTURES:

Work in progress. IMPROVING BEAM STABILITY BY REDUCING LASER AND RF JITTER.

INTERLEAVING LATTICE DESIGN

Argonne

Future Light Source Workshop, Shanghai

Yine Sun 22

THE UNIVERSITY OF CHICAGO **(UNIVERSITY OF Argone National Laboratory is a** US. Department of Energy is a US. Department of Energy is aboratory managed by UChicago Argone.LLC

WAKEFIELD EFFECTS FROM THE LINAC STRUCTURES

Implementation in ASTRA

- Divide the 10-ft structure into 10 sections;
- Assign each section a yoffset using the fitted curve;
- Scale the wake field strength by a factor of 0.1 from the whole structure wake field map.

Yine Sun

23

Effect on Vertical Emittance from L2:AS1 Transverse Wake

Future Light Source Workshop, Shanghai

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, L

APS Accelerator Complex;
Photo-Injector Linac;
Linac Extension Area (LEA);
Interleaving Operation;
Photo-Injector Beam;
First Experiment in LEA.

FIRST EXPERIMENT IN LEA IN COLLABORATION WITH EUCLID TECHLABS

- experimental chamber 9.75" along beam path;
- Chamber internal setup design, fabrication and installation are done in collaboration with Euclid;
- The first experiment will be the testing of dielectric wakefield tubes provided by Euclid:
 - Main goal is to commission the LEA beam line and characterizing the PCG beam.

	Beam direction

	Type I	Type II
Mode	Single	Multi
Inner diameter (mm)	0.8	0.5
Outer diameter (mm)	1.0	1.5
dielectric	3.8	3.8
length (cm)	12	6

Quartz tubes S. Antipov, Euclid TechLabs.

Yine Sun

26

CHICAGO

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

START-TO-END SIMULATION (ASTRA+ELEGANT)

 From PCG to chicane (150 MeV) using ASTRA with space charge effects;

YAG4

ACBend

dump

dume

- From chicane to LEA using ELEGANT with CSR included;
- LEA experimental chamber area with type I dielectric wake field tubes inserted, 10 cm long, 100µm offset.

wall

FUTURE LEA EXPERIMENT: TESSA-266

Future Light Source Workshop, Shanghai

PIETRO MUSUMECI

University of California at Los Angeles

LEA programmatic review November 10, 2017

UCLA Argonne 🔊 radiasoft Drift, FODO, Chicane 52cm Undulator Prebuncher (89.6cm) 12cm 12cm 12cm 4cm

drift

drift

32cm, helical 4cm period

Tapering Enhanced Stimulated Superradiant Amplification:

- Reversing the laser-acceleration process, extract a large fraction of the energy from an electron beam provided:
 - \checkmark A high current, microbunched input e-beam: 300 MeV 1000 A;
 - \checkmark An intense input seed;

Focus

✓ Gradient matching to exploit the growing radiation field.

Short wavelength single pass amplification demo at LEA.

Defoc

US

Yine Sun

THANK YOU FOR YOUR ATTENTION!

Future Light Source Workshop, Shanghai

Yine Sun

