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LCLS-ll Power and Complexity
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« LCLS FEL facility was designed for 5 kW beam power
« LCLS-Il can run 250 kW
 FEL beams from the x-ray undulators are hazards

* Hazardous conditions could also be from CW field emission from gun
or cavities

- Multiple hazard sources to shut-off

LCLS-II introduces increased risk to the existing FEL facility




History of Beam Containment System

Picture: Copper Stopper (52 X,)
after 880 kW 9.5 s
SLAC-PUB-1223 (1973)

BCS post-analysis:
IEEE Transactions on Nuclear Science,

VoI.NS-24, No.3, June 1977
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 SLAC's original BCS was for 2-mile long (up to 50 GeV) SLAC accelerator ~900 kW beam
power and 8 beamlines

* Uncontained beams that directly hit shielding results in 3.6 Gy/hr dose rates outside concrete

«  This stresses importance of using collimators/local shielding with beam interlocked monitors
18 GeV electron beam at average powers ranging from 165 to 880 kW demonstrated the highly
destructive capability of such beams

* Rapid burn-through of materials used in the construction of stoppers and collimators (~seconds)

* Need “an extensive electronic system to prevent damage to mechanical devices and to detect
onset of destruction”

+ Resulting BCS was “Reliable and essential to the operation of high-powered interlaced beams
being delivered to a number of different experimenter beamlines”

SLAC has a verified set of BCS guidelines for MW Linacs



http://www.slac.stanford.edu/pubs/slacpubs/1000/slac-pub-1223.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4329018

BCS Design Requirements

« BCS should consist of overlapping and type-redundant fault detection devices
and beam shut-off systems to serve four purposes:
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BCS Design Requirements

« BCS should consist of overlapping and type-redundant fault detection devices
and beam shut-off systems to serve four purposes:

(1) Limits personnel dose outside of housing from mis-steered beams (limits beam loss)
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BCS Design Requirements

« BCS should consist of overlapping and type-redundant fault detection devices
and beam shut-off systems to serve four purposes:

(1) Limits personnel dose outside of housing from mis-steered beams (limits beam loss)

(2) Protects the integrity of devices that contain the beam from damage e.g.
PPS stoppers, beam dumps, collimators
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« BCS should consist of overlapping and type-redundant fault detection devices
and beam shut-off systems to serve four purposes:
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(2) Protects the integrity of devices that contain the beam from damage e.g.
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BCS Design Requirements

« BCS should consist of overlapping and type-redundant fault detection devices
and beam shut-off systems to serve four purposes:

(1) Limits personnel dose outside of housing from mis-steered beams (limits beam loss)

(2) Protects the integrity of devices that contain the beam from damage e.g.
PPS stoppers, beam dumps, collimators
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(3) Limits beam power and keeps it within designated safe channels

(4) Acts to turn the electron beam off if an unsafe condition arises




BCS Design Requirements

« BCS should consist of overlapping and type-redundant fault detection devices
and beam shut-off systems to serve four purposes:

(1) Limits personnel dose outside of housing from mis-steered beams (limits beam loss)

(2) Protects the integrity of devices that contain the beam from damage e.qg.
PPS stoppers, beam dumps, collimators
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\\ (3) Limits beam power and keeps it within designated safe channels

(4) Acts to turn the electron beam off if an unsafe condition arises

«  BCS devices must be: Tamper-proof Configuration Controlled Documented

Self-monitoring where feasible Fail safe Reviewed 10



BCS Sensor Technologies Overview

Sub-system Reason In development for
SLAC BCS

Average Current Monitors

Fiber Loss Monitors

Bremsstrahlung power
monitor/ BSOICs

Magnet Current Monitors

Cooling Water Panels
Diamond Loss Monitors
Rastering monitor

FEL Collimator diodes
BCS Absorber diodes

FEL Intensity
Monitor/Interlock

Limit Beam Power

Limit Beam Loss

Limit Beam Loss

Limit Beam Power,
Protect Safety Devices

Protect Safety Devices
Protect Safety Devices
Protect Safety Devices
Protect Safety Devices
Protect Safety Devices

Protect Safety Devices

90

32

12
122

18

Sensor, electronics,
FPGA

Sensor, electronics

Sensor, electronics

Sensor

Sensor
Sensor, electronics
Electronics
Photo-diode, electronics
Photo-diode, electronics

PLC,
gap monitor

Magnet current
monitor sensors,

We will discuss some of the new technologies for SLAC BCS that are in
development
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LCLS-II Layout
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BCS Limitation of Beam Power
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BCS Limitation of Beam Power
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BCS Limitation of Beam Power
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Average Current Monitors (ACMs)

We are developing a cavity based solution to
measure average current of the beam

« Based on similar devices used at Jlab
Electric field of beam passing along axis of cavity
excites resonator modes
Monopole mode is proportional to the bunch charge
Part of field energy is extracted through probes
Two probe ports go to redundant Chain A Chain B
electronics for signal processing

Cavity Pros -a—-- '
- Low baseline drift dx!
* Good sensitivity
* Can detect dark current

Cavity Cons ~— E-field TMO10
*  Needs to be temperature controlled

« Calibration needs to be against other diagnostics
Piotr Kowina, Dmitry Liakin

Beam Position Monitors, Peter Forck,

We are developing cavity-based average current monitors for BCS

16



ACM Signal Processing

* ACM Chassis modified from LCLS-Il LLRF Chassis
* Fermilab LLRF down converter design
- BMB7 FPGA design from LBNL

FPGA will have separate programmers for Chain A Chain B FPGAs
« Work from same specification B

- Diversity in firmware Down Converter ?
- Test bench developed by y

independent party P
* Uses Soft Error Mitigation Controller =
from Xilinx

« Self-monitoring FPGA BMB?

* |If measured current > allowed
> ACM fault Digitizer (beneath BMB?)

———— e

SLAC/JLab/Fermilab/LBNL collaboration to develop ACM electronics and
firmware
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ACMs Self-Monitoring

« Self test uses a pilot tone

« 100 kHz off frequency from
1300 MHz carrier

« Chain A B electronics
compare pilot tone feed to
measurement from cavity

- If detected pilot tone signal
drifts > ACM fault

* Pilot tone also used to
verify ACM fault on over-
current

* In addition, temperature is
monitored

* Reference

e g
¥
RXA. Temp.

r L—> Fault

* Water Loop
* Temperature

* Probe RF
* Temperature

& A Chain
(.l B Chain
LA&B

A

\

* Test Control l, \

Fault (—l

* Probe RF
* Temperature

* Tone RF
e RXB_

4

* Tone/Test RF

The ACMs under development will be self-checking: continuous
monitoring of pilot tone provides end-to-end verification
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BCS Limitation of Beam Loss
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* By meeting area classification, this helps meet annual dose limits for personnel 19



Cherenkov light generated in fibers from radiation

« Particles from radiation showers generate Cherenkov light in fiber core
« The light can be trapped and transported in the fibers over ~100 - 200 m

Mis-steer beam with magnet

- } SS el T lCl <le T T F
Cherenkov light signal
/ carried on fiber

Test Fiber J L LCLS data from sector 24

s—
We are developing Cherenkov-fiber detectors for BCS to sense potentially
hazardous levels of radiation
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Cherenkov Fiber Deployment

Diagnostics
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Diagnostics

Waveform

|| Digitizer

+

MPS Threshold

MPS Trip?

Machine Protection System

| High|
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¢
AN
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76m B 100 m >
.
e i0ac

« Cherenkov light detected with PMT and integrated in electronics
« If signal > pre-set trip threshold, then - Fault

e Known issue: Fiber darkens with radiation

«  CERN studies show practically no attenuation above 700 nm

«  We mitigate radiation damage effects by using red filter and PMT

«  Self-monitoring can be achieved with a red LED at upstream end to produce “keep alive”

signal

We are developing a fail-safe/self-monitoring implementation for
Cherenkov fibers
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BCS Collimator Protection
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Diamond Detectors for protecting safety devices from
e-beams

* At high power, collimators can be burnt
through ~1s

« Onset of stress damage in ys
*  Melting onset ~ms

- Burn-through triggers shut off with "
integrated monitor /

* Already a 3 rem (30 mSv) event, one-use -
- Need to terminate as fast as possible

« Diamond detectors with a voltage applied 20
across them act as a solid state
jonisation chamber

 Nanosecond time resolution
 Radiation hardness

* Heat resistance
«  Simple deployment (no gas or cooling)

« Modulating the HV produces a signal for ™ m w0 20 20 20 oz a0

\ li-. -
https://cividec.at

B2 Diamond vs PIC 811 with Gap Change, 235 pC

1500

counts)

== 1000

500

B2 Diamond

s

Fit
Measured

self-check PIC 811 (V)
Cross-check with gas ionisation chambers at LCLS

We are developing diamond sensors to detect high power electron beam
in undesired places
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Photo-diodes for protection from X-rays

FEL protection collimators
protected with graphite-coated N
diamond disk feedthrough

Back-scattered X-rays detected by
photodiodes

Cooling water connection

Photo-diodes selected sensitive to anges
full X-ray energy range

SiC disc

Self-check of diodes and Diamond

processing electronics achieved
using LED

per BEAY
Heavy Met disc

2 fix flanges 6"CF

Water jacket

We are developing photodiodes to detect high power electron beam in
undesired places
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Globally distributed control system
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Architecture

s1 Sensors ) 510 S17 524 530 B105S B00S
DSC DSC ‘ DSC DSC DSC [\ I DSC DSC
[Shutoff Shut-off|
Devices Dewvices

» Two ways to connect a sensor to shut-off path:

Bo11 BS13 B921 NEH

[ DSC | DSC || DSC [ Dsc]

\

DSC = Digital Summary Chassis
(sums sensors)

* Direct copper or fiber connections for < 200 us shut off time
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Architecture

HMI
A | Safety PLC

57-1500F | BOOS

’ ProfiSafe

/0 > /o /o /o {e] 1/0 1/0 /o 1/0 /o

s1 o, 510 s17 24 530 BO0S Bo1l BS13 Bo21 NEH

Sensors

I/O = Fail safe input/output module

sSUums sensors
|Sh utofﬂ foer I‘STutoi‘f ( )

[ Shut-off| “Shut-off|
Devices Devices

» Two ways to connect a sensor to shut-off path:

 Direct copper or fiber connections for < 200 ys shut off time
» To Safety PLC (Siemens S7) for < 1 second response time
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Architecture

A(@_ safety PLC

S7-1500F BOO5

’ ProfiSafe

1/0 o 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
s1 '°W 510 517 s24 530 B106  BOOS B911  B913  B921 NEH
Fas
| DSC l DSC | DSC | | DSC || DSC ]|_Dsc ||_Dsc | | DSC || DSC || DSC | DSC
Shutoff fiber Ia:to
Devices Devices

» Two ways to connect a sensor to shut-off path:

* Direct copper or fiber connections for < 200 us shut off time
» To Safety PLC (Siemens S7) for < 1 second response time

» Desirable to use safety PLC where possible for improvements over custom
built relays in maintenance and diagnostic availability in control room

« Two chain redundancy in implementation at each level

Architecture spans full 4 km complex and can perform shut-off < 200 us
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Summary

* LCLS-Il has greater beam related hazards than LCLS
« BCS requirements developed at SLAC to address the risk

« Beam Containment (Controls) System performs multiple functions to
mitigate beam related risks

* Limits beam power
« Limits radiation levels outside of housing
* Protects safety hardware
« Turns off the beam when there are beam hazards
« ltis global across whole machine from Injector to Experiment hutches

« Technologies not used in BCS before are being developed

« Cavities with FPGA processing

* Cherenkov fiber beam loss monitors
« Diamond beam loss monitors

* Photo-diode X-ray monitors

« PLCs
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