Chicane BPM Design and Expectations Perpendicularly mounted strip-line for dispersive areas

Kirsten Hacker 18-5-06

Introduction

- Range and resolution requirements
- Design choice and alternatives
- Simulation expectations
- Front-end prototype measurements
- Stretched-wire prototype measurements
- Expectations for bunch-to-bunch energy measurement

BC2 BPM Placement

Requires replacement of central vacuum chamber in coordination with location of screen and collimator

Installation is scheduled for October 2006.

BC3 BPM Placement

In between 2nd & 3rd dipole of BC3 there is a section of empty vacuum chamber

Large Horizontal Aperture

- Accommodates large range of operating R₁₆
 - 74 mm range for FLASH BC2
 - 150 mm range for FLASH BC3
 - 100 mm range for XFEL BC1

Large beam energy-spread becomes position-spread

- ~ 10 mm (6 sigma) in FLASH BC2 chicane (0.5% rms)
- ~ 6 mm (6 sigma) in FLASH BC3 chicane (0.5% rms)
- ~ 60 mm (6 sigma) XFEL BC1 chicane (1.8% rms)

```
FLASH (BC2 16-20°)
                                                      FLASH (BC3 2-5°)
R_{56} = 140-228 \text{ mm}
                                                      R_{56} = 14-84 \text{ mm}
R_{16} = 284-358 \text{ mm}
                                                      R_{16}= 100-250 mm
E = 120-140 MeV
                                                      E = 380-450 MeV
                           XFEL (BC1)
                                                                               XFEL (BC2)
                           R_{56} = 100 \text{ mm}
                                                                               R_{56} = 40 \text{ mm}
                           R_{16} = 500-600 \text{ mm}
                                                                               R_{16} = 200-300 \text{ mm}
                                = 500 MeV
                                                                                    = 2,000 MeV
                           F
```

High Resolution (<10 um)

- Need energy feedback in BC2 to keep beam arrivaltime constant to 30 fs (~10um @v=c) for pump-probe experiments
- BC2 energy jitter (10⁻⁴) times R₁₆ (345 mm) becomes transverse position jitter (34.5 um) in chicane
- After the chicane this becomes $10^{-4} * R_{56} = 18$ um or 60 fs (rms) arrival-time jitter
- That means the energy jitter must be made better than 5*10⁻⁵
- A monitor for a feedback system must be at least a factor of 3 better than this for a single-bunch measurement
- This means that the desired resolution for a BPM is 5 um The same argument goes for BC3, but it is less critical because the R_{56} is a factor of 4 smaller

Possible Candidates

- Array of small striplines parallel to beam direction
 - Wire interference, Calibration, Offset drifts
- Normal BPM on movers
 - Bellows, space constraints

• Perpendicularly-mounted stripline

- RF measurement can't get resolution
- Optical method can (5 um is 17 fs for a single time-of-flight measurement)

- Beam arrival-time has been measured with phase-monitor with 30 femtosecond accuracy using optical method (F. Loehl)
- Improved electronics (diode and filter noise) could give factor of 10 improvement
- Placing EOM in tunnel (no 30 meter cable) gives a factor of ~2 improvement
- Using monitor with larger bandwidth transmission gives factor of ~2 improvement
- 2 measurements give a sqrt(2) improvement
- R₁₆ has a factor of 5 advantage over R₅₆ for an energy measurement with this technique in the XFEL BC1

=> Systematic errors will be the largest limitation of resolution

(10 fs phase measurement => 6 um position resolution)

MW Studio Simulation

Coaxial cable impedance matching model Tapered to SMA connector to maximize bandwidth of output

Time / ns

freq = 0-50 GHz, pos = -3 cm, beam width=0.2 mm

Time Signals

freq = 0-50 GHz, pos = -3 cm, beam width = 5 mm

Time Signals

Freq = 0.50 GHz, pos = -3 cm, beam width = 30 mm

Time Signals

Beam Phase Monitor Simulation

8 GHz scope 8 GHz (FWHM) simulation

Test bench

Setup developed by Florian Loehl

Stretched-wire tests w/ 7GHz scope and short-pulse generator

Stretched-wire simulation

Output -> 5 ns ringing amplitude is 3.5% of input

Conclusion: reality is 3/5 as good as simulation

<- Input 5.6 GHz bandwidth, arbitrary units 10% of this is reflected at chamber entrance

Phase changes vs. wire movement

• Stretched-wire moved in steps of 0.5 mm (one full rotation of micrometer) produced 3.5 ps phase shift and 3.6 is exactly what we wanted to see

Concerns

- If one side's phase measurement is at the zerocrossing and the other is not, the position measurement will change when certain beam parameters change
- Nevertheless, optical delay-lines and piezo line-stretchers can be used in a macro-pulse-tomacro-pulse feedback to keep the system measuring at exactly the zero-crossing

- Charge dependence of slope (scales linearly)
 - Charge stability is 2 to 3 % RMS
- Transverse width
 dependence
 - Simulation shows 1.9 ps change of zero crossing for 1 cm change in width
 - Slope change is more significant
- Longitudinal shape dependence
 - Much smaller than transverse dependence

What this means for a chicane energy measurement

- Arrival-time measured with phase-monitor can distinguish gun timing jitter induced energy jitter from the beam energy measured with the chicane BPM
- Bunch-length monitor used in conjunction with BPM can distinguish energy modulations caused by LLRF phase changes from amplitude changes
- Upstream and downstream BPMs will be needed to correct for the incoming orbit error contribution to the BPM energy measurement
- Two phase-monitors (before and after the chicane) can provide a good energy measurement as well, but the BPM can offer a factor of >5 advantage, based on simulation
- BPM offers the potential for an energy spread measurement (sum) when used in conjunction with the phase-monitor

Thank you for your attention!

- The 4 cm long stretched wire's 1st harmonic is 7.5 GHz (3*2.5 GHz input pulse)
- The 2^{ond} would have a zero crossing at the antenna location
- If this is the case then moving the wire will not change the pattern
- An alternative is that a cavity mode in the 16cm stripline direction, due to the end-plates, creates the reflection with a 1st harmonic of 0.93 GHz
- If this is the case then moving the wire will change the pattern
- (in simulation, it does, but it is hard to see in the prototype)
- Unfortunately, the rectangular shape of the inpu port for the wire also affects the signal, so distinguishing all of the effects is not
- completely straightforward

plot(x,-(sin(x)-sin(x/3-pi/2)).*exp(-x/100))

The similarity between the above function and the scope trace suggests that the 3rd harmonic or sub-harmonic of the transient might be reflected at one of the boundaries with a phase shift between -pi and -pi/2

Since a phase shift of pi is like a shorted-transmission line and a phase-shift of zero is like an open-transmission line, the phase-sh seen on the scope trace could imply that the impedance of the stretched wire termination is too small

Moving wire away from center of cavity makes influence of artificial cavity mode caused by endplates slightly weaker

Simplified Layout

RF Pickup

Front-End A

-Temperature controlled -Radiation shielded -EMI shielded Modular electronics space could provide room for limiters, attenuators, or other RF conditioning as well as conditioning for the bias voltage

Front-End B

Should be a 3HI VME card in same crate as ADC

Each front-end has its own Clock, and must, therefore, have its own ADC

Clock operates at 108 MHz, so a separate module could provide a gating function, for slower photo-diode/slower ADC option

-Temperature controlled

-EMI shielded