High-precision synchronization system for the XFEL

F. Löhl, F. Ludwig, H. Schlarb, S. Simrock, A. Winter (DESY) J. Kim, F. X. Kaertner (MIT)

Motivation

- Principles of the system
- L2RF conversion

Source of timing jitter

- 1. longitudinal and transverse electron beam quality
- 2. arrival time for high resolution pump-probe experiment

- 1. Photo-cathode laser
- 2. RF gun (non-relativistic electrons)
- 3. Pump-probe laser
- 4. RF phase and amplitude stability of acceleration upstream of BC

Point to point timing jitter is relevant (100m-3km)

Source of timing jitter - Caused by RF acceleration prior BC-

Vector sum regulation of 32 cavities => 1 deg == 1.8% (statistic 32 cav. helps) But! Phase changes can be correlated due to local oscillator changes

5/18/2006

Holger Schlarb, DESY

Timing jitter & sensitivity measured at FLASH with TDS (LOLA)

Arrival time sensitivity measurements

Holger Schlarb, DESY

Arrival time sensitivity measurements

Arrival time measurements

From BPM system easily sub 10fs resolution can be obtained
But! 1) RF cavity phase not known with sufficient precision
2) LO for phase measurement critical device!

5/18/2006

Holger Schlarb, DESY

Arrival time measurements

- synchronization of the electron beam is dominated by RF stability of sections upstream of first bunch compressors (next generation LLRF controls + DCW)
- fs stability requires ~10-6 amplitude and 0.0001° phase stability

 \Rightarrow this is hopeless !

- laser system can be locked to reference with smaller timing jitter (< 10 fs feasible)
- remaining timing jitter need to be measured with high accuracy to timing reference system (e.g. for post-ordering, FB etc.)

How can we achieve better synchronization?

Holger Schlarb, DESY

Attosecond synchronization! - outlook & upgrade -

• always based on electron beam manipulation by lasers

Requirements:

1. Electron beam is synchronized to laser < $\sigma_t \sim 30-60$ fs

2. Manipulation laser to exp. laser on femtosecond level

Optical clocks for lasers: synchronized to 100as level within macro pulse (1ms)Avoids problems with vibration and diffuse ground motion (< 1kHz, 30ns=100as)</td>Fiber link operates at small unity gain frequency (10Hz) for resynchronization5/18/2006Holger Schlarb, DESY

Requirements on synchronization system

- It should serve as a timing reference to the XFEL, providing femtosecond stability between all significant points throughout the facility with small or negligible drifts over days and weeks.
- This reference system must be self-contained, without the need for recalibrations.
- It must provide RF signals or the possibility to lock ultra-low-noise RF local oscillators to the timing reference at different frequencies,
- It must provide a mechanism to lock various laser systems, as in those used for electron beam generation, beam diagnostics, pump-probe experiments, seeding, and other applications.
- The system stability, robustness, and maintenance should not limit machine availability or delay commissioning.
- The failure modes should be transparent and allow for rapid repair and start up.
- •The expenditures should be moderate and cost-effective.

Master laser oscillator

- Dispersion managed soliton fiber-laser
- Fiber stretcher for passive mode locking to RF generator
- ·Gain medium Erbium, 1550 nm wavelength
- High output power up to ~ 1 nJ (50 mW average)
- Pulse duration ~ 100 fs FWHM
- Repetition rate ~ 50 MHz

Important characteristics

• timing information is carried by ultra-short optical pulse

~ 200fs (FWHM) \Leftrightarrow ~ 5 THz (FWHM) bandwidth

• fiber length stabilization based on same principle as timing detection

Laser to RF conversion

•AM to PM conversion requires accurate stabilization of laser power (photo-detector 1 ps/mW @ 10mW -> dP/P < 10-3 for 1 fs)

•Drifts may critical to control since PD and Amplifier are out of loop

•Thermal noise limitation of PD due to limited output power (~10fs) 5/18/2006 Holger Schlarb, DESY

Still rely on phase detection by photodiode (drift?, ampl. Stab. required)
+ Full PD output used

+ Thermal noise limitaion at high offset frequencies given by DRO 5/18/2006 Holger Schlarb, DESY

Laser to RF conversion

3) Balanced optical-RF phase detector

- + Does not rely on phase detection by photodetectors (EOM are used)
- + to first order gain and offset drifts are compensated
- More complex setup

Holger Schlarb, DESY

Summary

- laser based timing system has capability to synchronize various components in the linac to another with fs precision
- envision system is very flexible
- indivual parts have been demonstrated successfully
- reliability of a complete system needs to demonstrated!!!!!

\Rightarrow Installation of LbSynch at FLASH planned for 2007!