

Transverse-Longitudinal Phase Space Manipulations

Kwang-Je Kim

ANL and The University of Chicago

37th ICFA Beam Dynamics Workshop Future Light Sources May 15-19, 2006 DESY, Hamburg, Germany

Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

To Improve the Performance of X-Ray FELs

• LCLS reference parameters:

 λ = 8 keV, λ_u = 3 cm, K = 3.7, I_p = 3.5 kA, E_e = 15 GeV, Δ E/E = 10⁻⁴ , ϵ_n = 1.2 mm-mrad, L_{sat} = 100 m

• Vary K, ϵ_n , and E_e

(Z.R. Huang)

К	E _e (GeV)	^ε ո (mm-mrad)	L sat (m)
3.7	30	1.2	300
3.7	30	0.5	130
3.7	30	0.1	40
1	12	0.1	60

- shorter undulator
- shorter undulator
 and shorter linac
- It pays to strive for an ultralow emittance e-beam

Need for Phase Space Manipulation

RF Photocathode Gun

- Transverse emittance $\gamma \varepsilon_x$, $\gamma \varepsilon_v \sim 1 \times 10^{-6}$ m
- Energy spread very small

 $\sigma_{\Delta E} \sim 1.5 \text{ keV}$

$$\sigma_{\Delta E/E} = \frac{\sigma_{\Delta E}}{E} = 10^{-7} \textcircled{0} \quad E \sim 15 \text{ GeV}$$

FEL requires $\sigma_{\Delta E/E} < 10^{-4}$

Can we do the transformation:

$$(\gamma \varepsilon_x, \gamma \varepsilon_y, \sigma_{\Delta E/E}) = (10^{-6} \, m, 10^{-6} \, m, 10^{-7}) \rightarrow (10^{-7} \, m, 10^{-7} \, m, 10^{-5})?$$

Contents

Some properties of Hamiltonian Transport

Transverse-longitudinal exchange for x-ray FELs

Implementation

- Space charge effect
- Flat beam technique
- Optical system for exchange

Beam Transport and Manipulation

- 6D phase space: (x, x´, y, y´, z, δ)
- We will work mostly in 4D

$$\mathbf{X} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \\ \mathbf{z} \\ \mathbf{\delta} \end{pmatrix}$$

Beam matrix:
$$\sum = \langle \mathbf{x}\widetilde{\mathbf{x}} \rangle = \begin{bmatrix} \langle \mathbf{x}^2 \rangle & \langle \mathbf{x}\mathbf{x}' \rangle & \langle \mathbf{x}\mathbf{z} \rangle & \langle \mathbf{x}\mathbf{\delta} \rangle \\ \langle \mathbf{x}\mathbf{x}' \rangle & \ddots & \ddots \\ \langle \mathbf{x}\mathbf{z} \rangle & \ddots & \ddots \\ \langle \mathbf{x}\mathbf{\delta} \rangle & \ddots & \ddots & \langle \mathbf{\delta}^2 \rangle \end{bmatrix}$$

Transfer matrix: M

$$X = M X_o, \Sigma = M \Sigma_o \widetilde{M}$$

Hamiltonian Transport

Unit symplectic matrix

$$J = \begin{bmatrix} J_{2D} & 0 \\ 0 & J_{2D} \end{bmatrix}, \quad J_{2D} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

M is symplectic: $\widetilde{M} J M = J$

Det M = 1

Conserved quantities

$$\varepsilon_{4D} = Det(\Sigma)$$
$$I^{(2)} = -\frac{1}{2}T_r(\Sigma J \Sigma)$$

$$\sum = \begin{bmatrix} \Sigma_x & \Sigma_c \\ \widetilde{\Sigma}_c & \Sigma_z \end{bmatrix}, \quad \Sigma_x, \dots 2 \times 2 \text{ submatrices}$$

Projected emittances

$$\varepsilon_{x}^{2} = Det \Sigma_{x}, \quad \varepsilon_{z}^{2} = Det(\Sigma_{z})$$

$$I^{(2)} = \varepsilon_{x}^{2} + \varepsilon_{z}^{2} + 2 Det(\Sigma_{c})$$

Iff uncoupled;
$$\Sigma_{c} = 0$$

 $Det(\Sigma) = \varepsilon_{x}^{2} \varepsilon_{z}^{2}$
 $I^{(2)} = \varepsilon_{x}^{2} + \varepsilon_{z}^{2}$

Emittance Exchange Theorem

(E. Courant, "Perspectives in Modern Physics, Essays in Honor of H.A. Bethe," Interscience Pub., 1966)

For transport from an uncoupled to another uncoupled system, ε_a and ε_b are uniquely determined up to switching.

 $(\epsilon \epsilon_i) \rightarrow (\epsilon \epsilon_i) \text{ or } (\epsilon_i \epsilon_i)$

Proof:

$$\varepsilon_{1a}^{2} + \varepsilon_{1b}^{2} = \varepsilon_{2a}^{2} + \varepsilon_{2b}^{2}$$

$$\varepsilon_{1a}^{2} \varepsilon_{1b}^{2} = \varepsilon_{2a}^{2} \varepsilon_{2b}^{2}$$

$$\therefore QED$$

Can be generalized to higher dimensions

An Emittance Switching Scheme for Improved X-Ray FEL Performance

(P. Emma, Z. Huang, P. Piot, and KJK, under preparation)

Flat beam technique (units in m-rad)

 $\gamma \varepsilon_{x} \otimes \gamma \varepsilon_{y} : (10^{-6})^{2} \rightarrow 10^{-5} \otimes 10^{-7}$ $\blacksquare \text{ Use short electron beam } \sigma_{z} = 33 \,\mu$ $\gamma \varepsilon_{z} = \sigma_{z} \sigma_{\Delta \gamma} = 33 \,\mu \otimes 3 \times 10^{-3} = 10^{-7} \,m \left(\sigma_{\Delta \gamma} = 1.5 \,\text{keV/mc}^{2}\right)$ $Q = 33 \,\text{pC}, \, I = 100 \,\text{A}$ $\blacksquare \text{ Exchange } (\mathbf{x} \leftrightarrow \mathbf{z})$ $\gamma \varepsilon_{x} \otimes \gamma \varepsilon_{y} \otimes \gamma \varepsilon_{z} : (10^{-6}, 10^{-6}, 10^{-7}) \rightarrow (10^{-5}, 10^{-7}, 10^{-7}) \rightarrow (10^{-7}, 10^{-5})$

Final bunch length

$$\gamma \varepsilon_{z} = \gamma \sigma_{z} \sigma_{\overline{\delta}} = \gamma \sigma_{z} \times 10^{-4} = 10^{-5}, \quad \gamma = 3 \times 10^{4}$$
$$\sigma_{z} = 3.3 \ 10^{-6} \Rightarrow Compression \text{ by } 10$$
$$I = 100 \rightarrow 1000 \ A$$

Power gain length *LG* of an x-ray FEL at 0.4 Å versus the undulator parameter *K* for (a) a beam with a normalized transverse emittance 1×10^{-6} m-r and a peak current 3.5 kA and (b) a beam with a normalized transverse emittance 1×10^{-7} m-r and a peak current 1 kA. The relative rms energy spread in both cases is 1×10^{-4} (courtesy of Z. Huang).

Is (10⁻⁶, 10⁻⁶, 10⁻⁷)m consistent with the space charge degradation?

$$\gamma \varepsilon_i^{SC} = \frac{\pi}{4} \frac{1}{(\sin \phi_o)} \frac{2mc^2}{E_o} \mu_i(A), \quad A = \frac{\sigma_x}{\sigma_z}$$
(KJK, NIM, A275, 201(1989))

$$\mu_{x,y} = \frac{1}{3A+5}, \quad \mu_z = \frac{1.1}{1+4.5A+2.9A^2}$$

• Use spot size $\sigma_x = 0.5 \text{ mm}$, $\sigma_z = 33 \mu \text{m}$, A ~ 18

$$E_o = 120 \text{ MV/m}, I = 100 \text{ A}, \pi/4 \sin \phi_o \sim 1$$

 \rightarrow (10⁻⁶, 10⁻⁶, 10⁻⁷) !

Generating a Flat Beam with Angular Mom. Dominated Beam (Y. Derbenev), (R. Brinkmann, Y. Derbenev, K. Flöttmann), (D. Edwards ...), (Y.-e Sun)

KJK, KJK, ICFA-FLS, 5/15-19/06, PhaseSpace

Electron Emission into Axial Magnetic Field

$$X_{th} = \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} \quad X_o = \begin{pmatrix} x \\ x' - \kappa y \\ y \\ y \\ y' + \kappa x \end{pmatrix}, \ \kappa = \frac{qB}{2P_s}$$

Does Flat Beam Technique Violate the EET?

Thermal distribution before emission

$$\Sigma_{th} = \left\langle \boldsymbol{X}_{th} \boldsymbol{\tilde{X}}_{th} \right\rangle = \begin{bmatrix} \varepsilon_{th} T_{th}, & 0\\ 0, & \varepsilon_{th} T_{th} \end{bmatrix}, \ \varepsilon_{th} = \sigma_{x} \sigma_{x'}, \ T_{th} = \begin{bmatrix} \beta_{th} & 0\\ 0 & 1/\beta_{th} \end{bmatrix}$$

Distribution after emission

$$\Sigma_{o} = \left\langle X_{o} \widetilde{X}_{o} \right\rangle = \begin{bmatrix} \varepsilon_{eff} T_{o} & LJ \\ -LJ, & \varepsilon_{eff} T_{o} \end{bmatrix}$$
$$\kappa = \frac{qB}{2P_{s}}, \quad \varepsilon_{eff} = \sqrt{\varepsilon_{th}^{2} + L^{2}}, T_{o} = \begin{bmatrix} \beta_{o} & 0 \\ 0 & 1/\beta_{o} \end{bmatrix}, L = \kappa_{o} \sigma_{x}^{2}$$

■ $X_{th} \rightarrow X_o$ non-symplectic ■ Σ_o : coupled

Optical System Producing the x-z Exchange

$$(\gamma \varepsilon_x, \gamma \varepsilon_z) = (10^{-5}, 10^{-7}) \rightarrow (10^{-7}, 10^{-5})$$

Dipole mode cavity:

KJK, KJK, ICFA-FLS, 5/15-19/06, PhaseSpace

An Approximate Scheme for (x,z) Exchange M. Cornacchia and P. Emma, PRSTAB, 5, 084001 (2002)

M = M_D (-η,ξ,L) M_C(k) M_D (η,ξ,L)
 Choose ηk = 1 then

 \mathcal{E}_{70}

$$\varepsilon_{x} = \sqrt{\varepsilon_{zo}^{2} + 4\sigma_{x'}^{2}\sigma_{\delta}^{2}\eta^{2}}$$
$$\varepsilon_{z} = \sqrt{\varepsilon_{xo}^{2} + 4\sigma_{x'}^{2}\sigma_{\delta}^{2}\eta^{2}}$$

• Works if $\frac{2\sigma_{x'}\sigma_{\delta}\eta}{\leq 1}$

η cannot be reduced arbitrarily small due to second order aberration

An Exact Scheme for Emittance Exchange (KJK)

Then
$$M = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$$

 $\begin{bmatrix} \Sigma_x & 0 \\ 0 & \Sigma_z \end{bmatrix} \rightarrow \begin{bmatrix} B\Sigma_z \widetilde{B} & 0 \\ 0 & C\Sigma_x \widetilde{C} \end{bmatrix}$

Technical Detail-1/ Gun-Flat Beam Design (Phillipe Piot)

- High aspect ratio is difficult to maintain
- Phillipe Piot will solve the problem

Cup Elat beem design	Operating Parameter	Value	Units
Gun-Flat beam design	Bunch charge	20	pC
Phillipe Piot	Laser rms spot size	300	μm
	Laser rms pulse duration	80	fs
	Peak E-field in rf-gun	138	MV/m
	Launch phase	45	deg
	Peak E-field in TESLA cavities	36	MV/m
	B-field on photocathode	0.191	Т
	Cavity off-crest phase	4	deg
	Beam Parameter	Value	Units
	Before flat beam transformation		
	Transverse emittances	4.96	μm
	$\mathcal{E}_{4D} = \gamma \sqrt{\left\langle \left(X,Y\right)\!\!\left(X,Y\right)\!\!^T \right\rangle}$	0.23	μm
	Longitudinal emittance	0.071	μm
	Kinetic energy	215.4	MeV
	After round-to-flat-beam transformer		
	Emittance $\gamma \varepsilon_x$	9.923	μm
	Emittance $\gamma \varepsilon_{y}$	0.005	μm
	Longitudinal emittance	0.080	μm
		0.22	1

Gun-Flat Beam Design by Phillipe Piot

Philippe's Original File (longitudinal distributions)

Technical Detail-2/ Exchanger Paul Emma

- Energy spread in the dipole cavity→ second order dispersion→ emittance growth
- Minimize emittance growth with suitable initial chirp
- Phillipe's out put turns out to have almost the right chirp!!

 $\sigma_y = 0.203 \text{ mm}$ 0.4 0.2 0.2 0.0 ~ -0.2 -0.4 0 = 500 + 1000 + 500 + 2000 + 2500 + 3000N

watch-point phase space-input; prograte lightice; prograte

- L -

Control of Second-Order Dispersive Aberration

- Energy spread is induced in T-cav due to transverse beam extent ($\delta = ky$)
- Second-order dispersion is generated in last two bends, which dilutes bend plane (y) emittance

The right initial energy chirp minimizes the divergence, γ, after the last bend, which minimizes emittance growth

$$\varepsilon^{2} = \langle (y + \Delta y)^{2} \rangle \langle {y'}^{2} \rangle - \langle (y + \Delta y)y' \rangle^{2} = \varepsilon_{0}^{2} + \gamma \varepsilon_{0} \langle \Delta y^{2} \rangle$$

Enter presentation date

[Your Presentation Title] $\frac{\varepsilon}{\varepsilon_0} = \sqrt{1 + \frac{\gamma}{\varepsilon_0}}$

The Effect of Initial Chirp \rightarrow Small γ at System Exit

The final divergence, γ , is decreased by the initial chirp \rightarrow shorter bunch in cavity \rightarrow less y' = kz after cavity...

For large γ (left) and small γ (right), the same Δy increase produces much larger area increase (emittance growth) when γ is large [Your Presentation Title]
Enter presentation date

After Emittance Exchanger (longitudinal distributions, no CSR)

After Emittance Exchanger (transverse distributions, no CSR)

Before and After Emittance Exchanger (1st order – no CSR)

