High-Brightness Source R&Ds for a XFEL development in the Pohang Accelerator Laboratory (PAL)

S. J. Park, C. B. Kim, J. H. Park, Y. W. Park, J. Y. Huang, T. Y. Lee and I. S. Ko

Pohang Accelerator Laboratory/POSTECH

May 18, 2006

To be presented at the 37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources

Pohang Light Source (PLS)

Beam energy (GeV)	2.5
Frequency (MHz)	2,856
Energy spread (%)	0.26
Bunch length (ps)	13
Beam current (A)	33
Normalized emittance (um)	150
Number of klystrons	12
Klystron power (MW)	80
SLED Gain	1.6
No. of accelerating columns	44
Total length (m)	160

	Designed Value	Achieved Value
Energy (GeV)	2(2.5)	2(2.5)
Stu	red current (mA)	
Multibunch	300(150)	305(182)
Single Bunch	10	26
Emittance (nm rad)	12.1(18.9)	±11(13)
	Lifetime(hr)	
100mA in 400 bunch		28(42)
10mA in single bunch		1
Bunch length (psec)	16.8	21.2
RF Voltage (MW)		1.6
1	Betatron Tunes	
Horizontal (V,)	14.28	14.28(14.258)
Vertical (V _y)	8.18	8.187(8.147)
Synchrotron Tune	0.0109	0.0109

Sung-Ju Park (smartguy@postech.ac.kr)

Layout of PAL XFEL

Requirements of Injector for the PAL XFEL

- 1. Beam Energy: > 130 MeV
- 2. Bunch Repetition Rate: 60 Hz max.
- 3. Bunch Charge: 1 nC nominal
- 4. Bunch Length: 10 ps nominal
- 5. Transverse (rms, normalized) Emittance (@ 1-nC beam charge)
 - Slice emittance @ undulator entrance: < 1 mm mrad
 - Slice emittance @ injector exit: < 0.8 mm mrad
 - Projected emittance @ injector exit: < 1.0 mm mrad
- 6. Energy Spread
 - Un-correlated (slice) energy spread : ~10⁻⁵ rms
 - Integrated energy spread: 0.1 % rms

Strategy for PPI (PAL XFEL Photo-Injector) Development

GTS (Gun Test Stand)

BNL Gun-IV style PC RF Gun Basic Gun Performance Test High-Brightness Beam Physics R&D FED (Femtosecond Electron Diffraction)

FIR Facility @ TS Bldg

PTS (PPI Test Stand)

New RF Gun Cavity Ti:Sa Laser with Pulse Shaping Capability Ultra-stable RF Source Beam Diagnostics from the GTS

PPI @ PAL XFEL Tunnel

PAL XFEL Injector PC RF Gun 2 Acc. Structures 6D E-beam Instrumentation Highly Reliable & Stable System

GTS (Gun Test Stand)

- 1. is a temporary facility for gun testing. It consist of a PC RF gun, a Ti:Sa laser, a RF source, and beam diagnostics.
- 2. is a high-brightness R&D resource at the PAL.
 - Diagnostics R&D.
 - Thermal Emittance (Cathode Intrinsic Emittance) R&D.
- 3. will be utilized for science applications including FED (Femtosecond Electron Diffraction).
- 4. will be converted to the electron source for a FIR facility.

GTS Layout

GTS Status

- 1. Construction started in December, 2004.
- 2. First beam was achieved on November 1, 2005.
- 3. Best beam achieved as of May 10, 2006:
 - Energy ~ 2 MeV (not exactly measured yet)
 - Initial phase = 30°
 - Q = 320 pC (maximum ~500 pC at higher initial phase)
 - Laser pulse length = 5 ps (FWHM)
 - Peak current = 64 A
 - Beam size at 1.46 m from cathode = $500 \mu m$ rms
 - Laser spot diameter at the cathode = 3 mm (hard edge)
 - Normalized rms emittance ~ 4 mm mrad
- 4. Things to be done
 - Energy measurement
 - Time slew compensation (need normal incidence ?)
 - Tests at higher energies (with a new cavity ?)

Beam Images on Phosphor Screens

- Beam energy ~ 2 MeV
- Initial phase = 30°
- Charge = 320 pC
- Laser Spot Diameter (hard edge) = 3 mm, obliquely incident
- Laser Pulse Length (FWHM) = 6 ps
- Normalized rms emittance ~ 4 mm mrad

PAL XFEL

Beam Position Stability

- Beam on S1 at z = 0.56 m from the cathode -

E ~ 2.5 MeV Q ~ 2 pC $\sigma_x \sim 100 \ \mu m$ $\phi_o \sim 30^\circ$ $f_{rep} = 5 \ Hz$

Dark Current vs. RF Power Input

Measurements of Charge vs. Initial Phase

Beam Charge Measurements

ICT from Bergoz Instrumentation

ICT sensitivity = 5 Vs/C
Output pulse length = 20 ns

Coaxial Faraday cup, home-made

- A cone-shape button (~15-mm dia.) is attached to a N-type connector
- Capacitance of the button is several pF

Klystron Output Power and Expected Beam Energy vs. Klystron Beam Current

Beam Energy vs. Initial Phase for different Field Gradient at Cathode

Emittance Compensation by Generalized Brillouin Flow (Invariant Envelope)

Evolution of rms beam envelope through accelerating and focusing channel is given by the following equation of motion,

$$\sigma'' + \sigma' \left(\frac{\gamma'}{\beta^2 \gamma}\right) + K_r \sigma - \frac{\kappa_s}{\sigma \beta^3 \gamma^3} - \frac{\varepsilon_n^2}{\sigma^3 \beta^2 \gamma^2} = 0$$

,which applied to the LCLS-type injector configuration, yields the matching condition at the entrance of the booster accelerator:

Measurement of Emittance Oscillation (1/3)

- Experimental Setup* -

* The SPARC/INFN work on the emittance meter inspired us.

Sung-Ju Park (smartguy@postech.ac.kr)

Measurement of Emittance Oscillation (2/3)

- Beam Images at and after a slit -

* For better result, we need (1) to improve data analysis methodology, and (2) to automate data acquisition processes.

Fabrication of a new Gun Cavity

Possibility of Measuring Very Small Beam Divergence Using Electron Diffraction

Simulated aluminum-foil diffraction patterns from beams with divergences of (a) 0.05, (b) 0.1, (c) 0.2, and (d) 0.3 mrad

Conclusion

- 1. A photo-injector test facility was established and high-brightness R&Ds are under way.
- 2. A demonstration experiment for the FED (Femto-second Eectron Diffraction) will be performed in this year. Measurement of bunch length for FED beams (low charge, fs bunch length) is challenging.
- 3. A new photo-injector facility will be constructed.
 - An ultra-stable RF source (modulator stability < 0.05 %).
 - A Ti:Sa Laser with pulse-shaping capability.
 - A new gun cavity.
 - An accelerating structure.
 - 6D beam diagnostics.