

# Fully Coherent X-ray Pulses from a Regenerative Amplifier Free Electron Laser

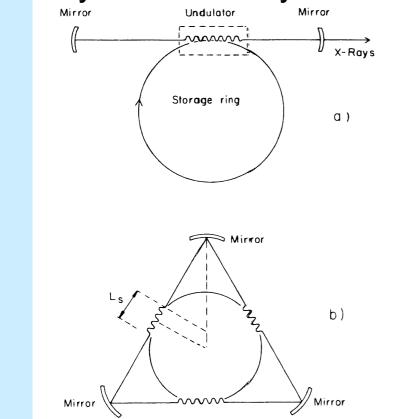
# **Zhirong Huang and Ron Ruth**


SLAC

FEL working group (5/18/2006)

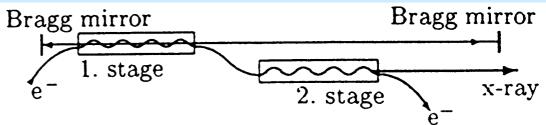
### Introduction

SASE x-ray sources will lay the foundation for nextgeneration x-ray facilities


Due to its noisy startup, SASE is transversely coherent but temporally chaotic (LCLS example, from S. Reiche)



Monochromator can be used to select a single mode, but flux is reduced (by ~700) and intensity fluctuates 100%

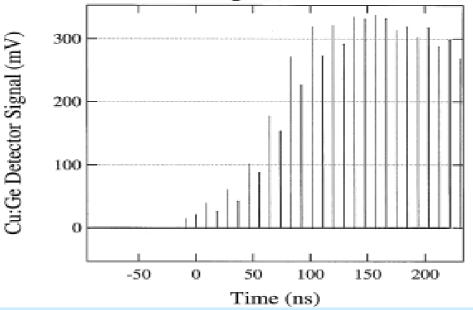

Various schemes to improve temporal coherence proposed

# Feedback X-rays Early ideas of x-ray mirrors: R. Colella & A. Luccio (1984)



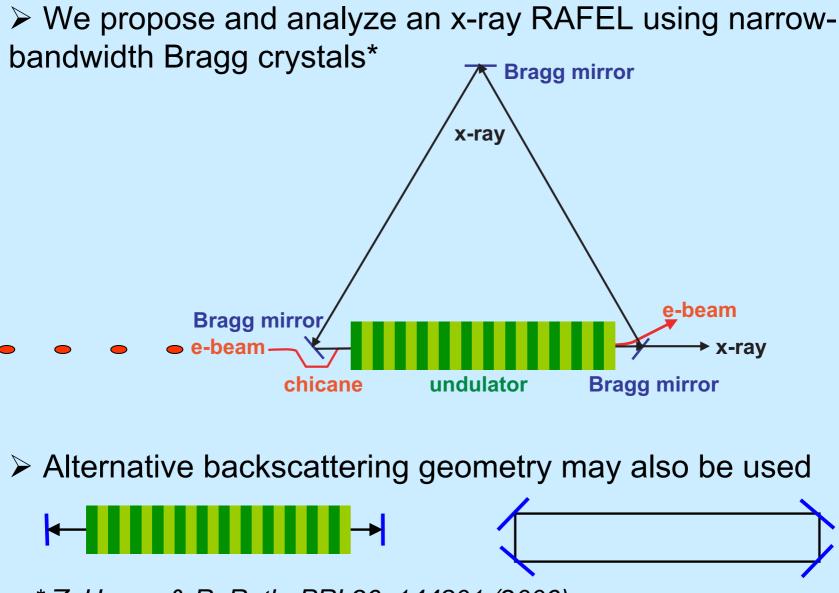
They recognize x-ray outcoupling may be a problem (extremely thin crystal, 0.1% of total power leaks out)

B. Adams & G. Materlik (FEL1996), feedback x-rays and switch out microbunched beams



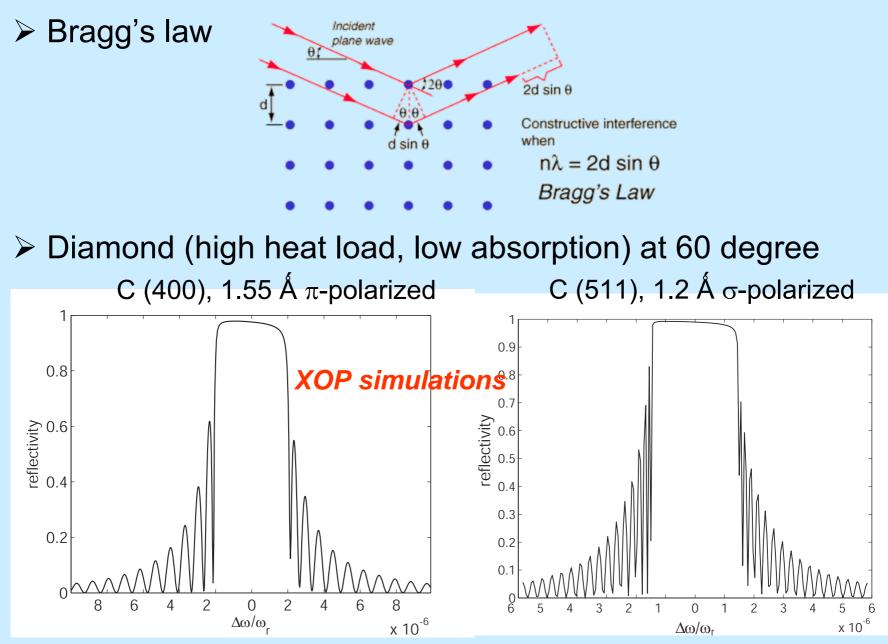

# **Regenerative Amplifier FEL (RAFEL)**

RAFEL: high-gain, small feedback (high extraction efficiency)


Demonstrated in IR (~16 μm, LANL) (FEL1998) First lasing of the regenerative amplifier FEL

Dinh C. Nguyen\*, Richard L. Sheffield, Clifford M. Fortgang, John C. Goldstein, John M. Kinross-Wright, Nizar A. Ebrahim

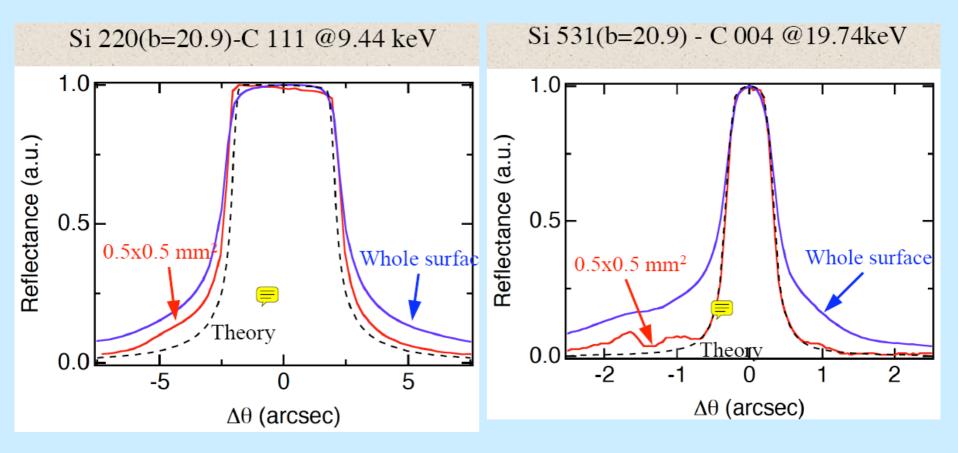



Proposals for VUV FELs DESY: B. Faatz et al., NIMA 1999 Daresbury 4GLS: N. Thompson et al., FEL2005

### X-ray RAFEL



\* Z. Huang & R. Ruth, PRL96, 144801 (2006)

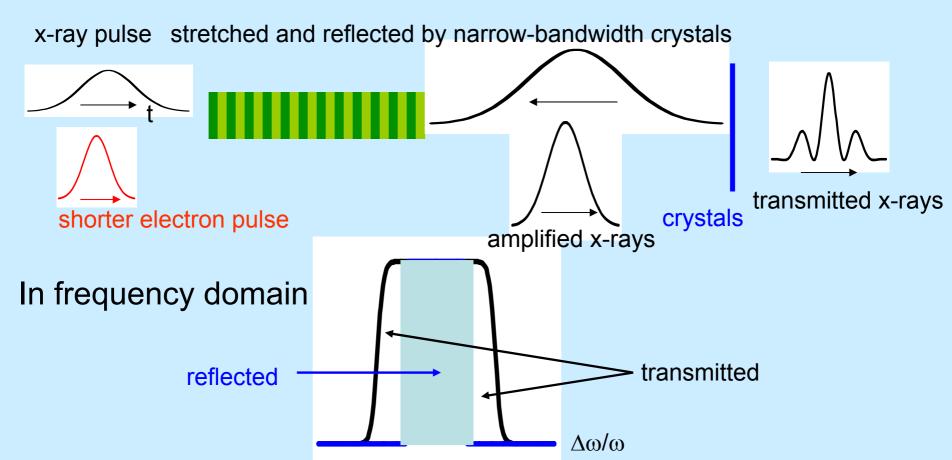

#### **Diamond crystals as Bragg Mirrors**



#### **Measured rocking curves**

#### Diamond workshop @ ESRF, May 24-25, 2004

Tamasaku et al: "Characterization of synthetic IIa diamonds at SPring-8"




#### **Frequency-domain extraction scheme**

If crystal reflects ~100% within narrow bandwidth, how can power be extracted out of the cavity?

Use bunch shorter than the reflected x-ray pulse: FEL interaction 
 amplify and spectrally broaden the radiation

 Power transmitted outside the feedback bandwidth



# **1D analysis**

➤ Radiation slippage (~ 0.1 µm) << bunch length (~10 µm)</li>
 → field gain factor proportional to local beam current

$$g(t) \approx g_0 \exp\left(-\frac{t^2}{2\sigma_{\tau}^2}\right)$$

rms bunch length

Radiation field at undulator end of n<sup>th</sup> pass

$$E_n^a(t) \approx E_n(t)g(t) + \delta E_n(t)$$

radiation field at undulator begin SASE generated by nth bunch

Signal is spectrally filtered and fed back to (n+1)<sup>th</sup> pass

$$E_{n+1}(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega t} \int_{-\infty}^{\infty} dt' E_n^a(t') e^{i\omega t'} f(\omega)$$

$$\uparrow$$
narrow-band filter function

SASE term starts the process, but can be ignored for n>>1 as the feedback signal dominates

## **Round-trip gain and extraction efficiency**

 $\succ$  Look for an exponentially growing solution with *n* 

$$E_n(t) = \Lambda^n A(t) e^{-i\omega_r t}$$

> Get an integral equation for gain  $\Lambda$  and mode profile A(t)

$$\Lambda A(t) = \sqrt{R} \sigma_m \int_{-\infty}^{\infty} \frac{dt'}{\sqrt{\pi}} e^{-\sigma_m^2 (t-t')^2} g(t') A(t')$$
peak reflectivity rms bandwidth of crystals

> A Gaussian fundamental mode has the largest round trip power gain  $G_{eff} = |\Lambda|^2 = G_0 R \frac{\sqrt{1+8\sigma_m^2 \sigma_\tau^2} - 1}{\sqrt{1+8\sigma_m^2 \sigma_\tau^2} + 1}$ 

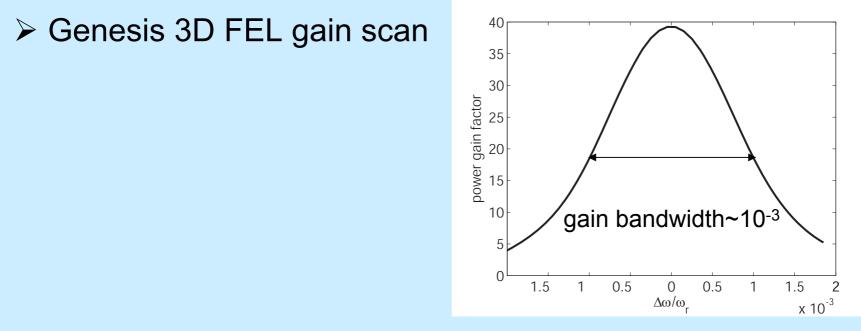
FEL peak power gain =  $|g_0|^2$ 

> Assume no absorption by crystals, maximum extraction efficiency  $\sqrt{1+8\sigma_m^2\sigma_m^2}-1$ 

$$\eta = 1 - R_{\sqrt{\frac{\sqrt{1+8\sigma_m^2 \sigma_\tau^2 - 1}}{\sqrt{1+8\sigma_m^2 \sigma_\tau^2 + 1}}}}$$

# A possible RAFEL configuration for LCLS

➤ Use LCLS linac but without SLED (~3.5 µsec rf pulse)


Maximum LCLS energy without SLED is ~10 GeV

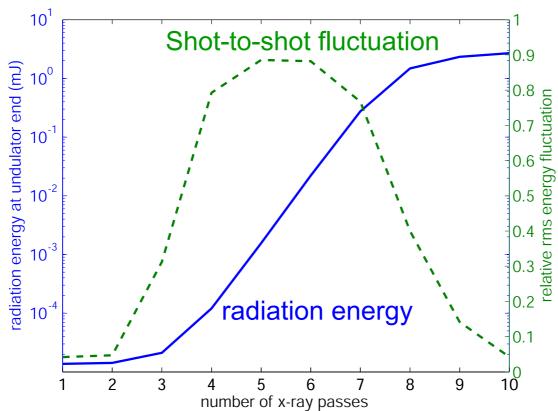
➤ Adjust undulator K (≈2.4) for FEL wavelength at 1.55 Å

Use a 20-m undulator instead of >100 m for SASE

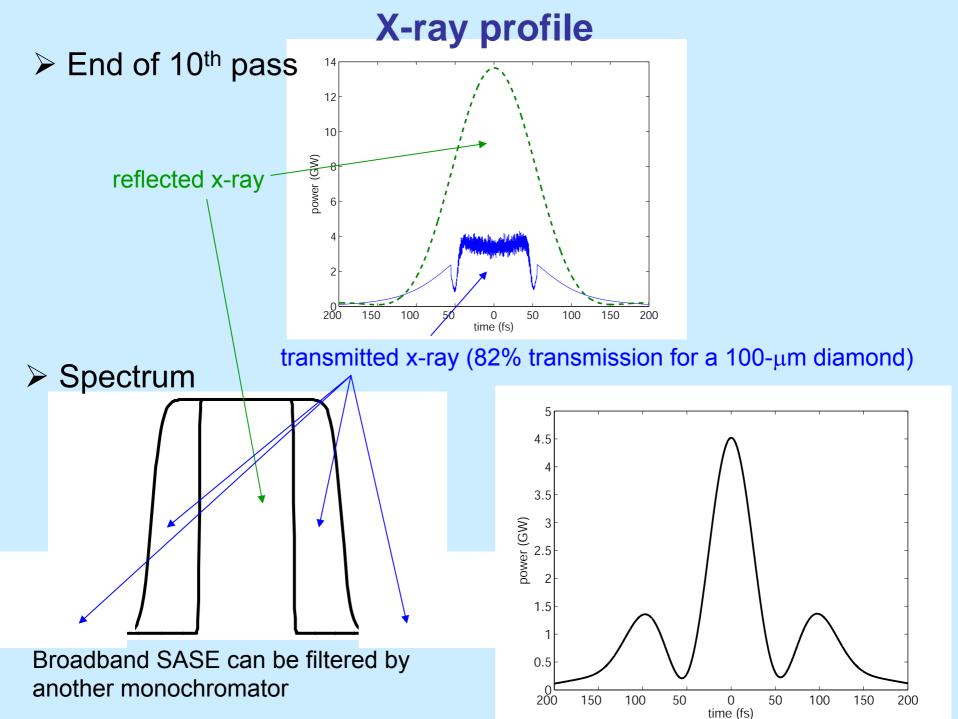
| Parameter                      | Symbol                         | Value                  |
|--------------------------------|--------------------------------|------------------------|
| electron energy                | $\gamma mc^2$                  | $9.9~{ m GeV}$         |
| number of bunches              |                                | 10 to 11               |
| bunch spacing                  |                                | $\sim 0.25~\mu { m s}$ |
| bunch charge                   | Q                              | $\sim 300~{\rm pC}$    |
| bunch peak current             | $I_{pk}$                       | 3 kA                   |
| fwhm bunch duration (flattop)  | T                              | 100 fs                 |
| rms energy spread at undulator | $\sigma_E/E$                   | $1 	imes 10^{-4}$      |
| transverse norm. emittance     | $\gamma \varepsilon_{x,y}$     | $1~\mu{ m m}$          |
| undulator mean beta function   | $\beta_{x,y}$                  | $18 \mathrm{~m}$       |
| undulator period               | $\lambda_u$                    | $0.03 \mathrm{~m}$     |
| undulator parameter            | K                              | 2.4                    |
| FEL wavelength                 | $\lambda_r$                    | 1.55 Å                 |
| photon energy                  | $\hbar \omega_r$               | $8 {\rm keV}$          |
| FEL parameter                  | ρ                              | $5 	imes 10^{-4}$      |
| undulator length               | $L_u$                          | 20 m                   |
| maximum FEL gain per pass      | $G_0$                          | 39                     |
| 3-crystal bandwidth            | $(\Delta \omega_m / \omega_r)$ | $4\times 10^{-6}$      |
| 3-crystal reflectivity         | R                              | 91%                    |

### **Gain simulation and calculation**




> With  $G_0=39$ , use Gaussian FWHM widths for flattop current and reflectivity widths  $\rightarrow$  round-trip  $G_{eff}=16$  (theory)

We develop 1D time-dependent RAFEL simulation (SASE+ narrow-band feedback)


Use a larger energy spread in 1D code to reproduce 3D gain

### **1-D simulation results**

➢ Simulations use nearly flattop current and reflectivity functions →  $G_{eff}$  =14



Radiation energy saturates at around 9<sup>th</sup> pass, relative energy fluctuation comes down from 90% to ~5% (SASE single mode always fluctuates 100%)



# Radiation energy dose and damage issue

#### Comparison of LCLS SASE and RAFEL power and energy

| X-ray properties                            | SASE                                 | RAFEL                                               |
|---------------------------------------------|--------------------------------------|-----------------------------------------------------|
| Pulse length (fwhm)                         | 200 fs                               | 100 fs transmitted (150 fs reflected)               |
| FEL pulse energy                            | 2 mJ (one pulse)                     | 2 mJ (last 2 saturated pulses)                      |
| FEL peak power                              | 10 GW                                | 4 GW out (14 GW in cavity)                          |
| FEL photon energy                           | ~ 8 keV                              | 8 keV                                               |
| Absorption in 100-µm<br>diamond crystal     | 18 % of 10 GW = 1.8 GW               | 18 % of 4 GW = 0.72 GW                              |
| Beam transverse area                        | $\sim (50 \ \mu m)^2 (100 \ m away)$ | $\sim (22 \ \mu m)^2$                               |
| Energy dose on crystal                      | 0.004 eV/atom                        | $0.002 \text{ eV/atom} \times 2 \text{ pulses (?)}$ |
| Spontaneous power<br>(over large beam area) | 70 GW                                | $3.6 \mathrm{GW} 	imes 10 \mathrm{bunches}$         |

Melt dose level of C (graphite) is 0.9 eV/atom, more than two orders of magnitude higher than both SASE and RAFEL doses on diamond

#### **Discussions**

> FEL gain bandwidth ~  $10^{-3}$ , need energy uniformity of the bunch train within ±0.05% (some beam loading compensation for about 1 mA macropulse current)

> Time jitter: don't care overall bunch train jitter, do care bunch-to-bunch spacing jitter (±100 fs relative jitter requires 11-bunches of 2.5  $\mu$ sec to reach saturation at 1.55 Å)

Crystals need slight bending to provide necessary transverse focusing and pointing stability of x-rays

Switch out cavity x-ray power (suggested by J. Hastings, D. Rees)

→ rotate the crystal by ~10 µrad in 0.25 µsec
 → change the lattice spacing by a laser (more suitable for silicon crystals)

### **Summary**

We discussed a narrow-bandwidth RAFEL as a candidate for a fully coherent x-ray laser

It may offer two to three orders of magnitude improvement in temporal coherence and spectral brightness over SASE x-ray sources

Multi-bunch & x-ray feedback allows for a much shorter undulator and may be adapted in LCLS with s-band linacs

➤ May be more easily adapted in superconducting linacs with planned multi-bunch operation in a long rf pulse → relaxed beam and jitter requirements