Simulation studies on the self-seeding option at FLASH

B. Faatz, V. Miltchev, J. Rossbach, R. Treusch

37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources

This work has been partially supported by the EU Commission in the Sixth Framework Program, Contract No. 011935 – EUROFEL

1

V. Miltchev, FLS Workshop, DESY, Hamburg 31 May, 2006

Motivation

typical spectrum of SASE FEL radiation

Due to the start up from noise:

- \Rightarrow wide band output radiation (~0.5%)
- \Rightarrow the output consists of a number of uncorrelated spikes
- \Rightarrow poor temporal coherence of the generated light

Basic principles of the self-seeding option "

1) J. Feldhaus et al. / Optics Communications 140(1997) 341-352

Schematic view of the seeding option for FLASH

Basic requirements:

- 1) The 1st section operates in linear high-gain regime, <P_{SASE}>~10MW
- 2) The micro bunching is smeared out after the magnetic chicane
- 3) The monochromator resolution $\Delta\omega/\omega\approx 5\cdot 10^{-5}$
- 4) The seeding power $P_{SEED} \sim 10 \text{kW} >> \text{ shot noise power } P_{SHOT} \sim 10 \text{W}$
- 5) The seed pulse is amplified to saturation in the 2nd undulator section

Features of the self-seeding option

1) E. Saldin et. al. NIM A 445(2000), 178-182

Electron beam optics 1,2)

for each radiation wavelength λ_{R}

- tune the quad strength to achieve linear regime in the 1st section
- use the bypass magnets to match to the optics in the 2nd section

1) B. Faatz et. al., NIM A475, 603 (2001)

2) R. Treusch et. al. "The Seeding Project for the FEL in TTF Phase II", HASYLAB annual report 2001

Simulation techniques

FEL calculations

Step 1: 1st section - GENESIS

 8192 macro particles/slice. The particle distribution exported into partfile

Step 2: bypass + 2nd section – GENESIS

- import the particle file from the 1st run
- bypass integrated in GENESIS by means of a transfer matrix (A.Meseck)
- bypass transfer matrix calculation, matching etc. – ELEGANT
- certain power and wavelength assumed for the external seeding. Implemented using $P_{SEED} \sim 10 kW$, $\lambda_{SEED} = 6..60 nm$

CSR-effects studies

Step 1: <u>1st section + bypass</u> - ELEGANT

 10⁶ macro particles/bunch. ELEGANT2GENESIS is used to convert the final phase space distribution into averaged slice information for GENESIS (beamfile)

Step 2: 2nd section – GENESIS

- import the beamfile from the 1st run
- certain power and wavelength assumed for the external seeding. Implemented using $P_{SEED} \sim 10 kW$, $\lambda_{SEED} = 6..60 nm$

Not included: space charge effects, wave front propagation through the monochromator beamline (to be done)

Electron optics – 6 nm

FEL calculations – 6 nm(1st section)

V. Miltchev, FLS Workshop, DESY, Hamburg 31 May, 2006

FEL calculations – 6 nm(1st section)

FEL performance – 6 nm(2nd section)

CSR effects at 6nm (ELEGANT)

CSR impact on FEL performance at 6nm

Electron optics - 60 nm

Electron optics – 60 nm

Micro bunching before and after the bypass

FEL performance – 60 nm

FEL performance – 60 nm

CSR effects at 60nm (ELEGANT)

V. Miltchev, FLS Workshop, DESY, Hamburg 31 May, 2006

CSR impact on FEL performance at 60nm

CSR effects not included

CSR impact on FEL performance at 60nm

Outlook

- Further investigations of the FEL performance
 - at different electron beam energies $\boldsymbol{\gamma}$
 - at various seeding wavelengths λ (for fixed γ)
- Studies on the influence of the electron beam optics on the FEL output

include steerers at different locations in the 2nd section, vary the quadrupole strength

- Tolerance studies
 - errors in electron optics (e.g. quadrupole strength, offsets and position)

- tolerances of the electron beam parameters (e.g. peak current, emittance, energy spread)

• Include wave front propagation through the monochromator beamline in the FEL simulations