

The SPAR project

C. Vaccarezza

on behalf of the SPARX team

Outline:

- Introduction
- The project goal
- The 1-2 GeV Linac options for 13.5-1.5nm source
- First s2e simulation results
- Project schedule & cost estimation

The SPARX Project

- ✓ 2001 proposal submitted to MIUR
- ✓ 2003 approved from MIUR
- ✓ 2005 partial funding of the project :
 - 10+10 M€ (R&D activity⇒Sparxino proposal)
- 2006 decision from Regional Government of Lazio to support the construction of the
- SPARX-FEL in two phases.

The project goal is a X-ray FEL facility for:

- Genoma functional and structural characterization studies by molecular crystallography with atomic length resolution.
- Time resolved X-ray diffraction spectroscopy
- Time resolved chemical reaction studies (pump & probe technique)
- Phase transition studies outside the thermodynamic equilibrium condition
- more and more..

- "Time resolved X-ray microscopy", D. Pelliccia, CNR-INFN
- "Image reconstruction of non periodic nanostructured objects using coherent X-ray diffraction (CXD)", G. Campi, CNR-IC
- "Proprietà ottiche del "mezzo vuoto" a corte lunghezze d'onda" G.Cantatore Uni-TS
- "Low energy X-rays QED tests", M. Milotti Uni-UD
- and more on Radiation Transport, Diagnostics, Beam Handling, Detectors and Ultrashort Radiation Pulses

FOR MORE INFO...

http://www.Inf.infn.it/conference/sparx05/

Input from the workshop:

Wavelength range as close as possible to the water window $(\sim 2.5 - 4.5 \text{ nm})$

... and to the carbon window

C. Vaccarezza – 37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources

SPA

Input from the worksho

Wavelength range as possible to the water v $(\sim 2.5 - 4.5 \text{ nm})$

... and to the carbo

Flexible design:

Penetration depth in water and in biological material

SASE & Seeded configurations

SPARX Project phases:

 1 GeV Linac to drive SASE and seeded FEL experiment in the wavelenght range:

 $6nm < \lambda < 13.5nm$

2 GeV Linac to reach:

$1.5nm < \lambda < 6nm$

Electron Beam parameters

SP

Beam Energy	1-2	GeV
Peak current	1-2.5	kA
Emittance (average)	2	mm-mrad
Emittance (slice)	1	mm-mrad
Energy spread (correlated)	0.1	%

SPAR *

Site map

Schematic layout 1-2 GeV

SPA

RF schematic layout

SPARX-TV 2GeV

SPA

From the SPARC photoinjector:

Schematic layout of the SPARX photoinjector

RF compressor Phase range	B1,B2,B3 (gauss)	Current (A)	Max. Emittance (mm)
-60°/-75°	1200,0,0	117-151	0.7
-75°/-83°	1200,1400,0	151-249	0.8
-83°/-87°	1200,1400,0	249-458	1.3
-87°/-91°	from 1200 to 1800	458-1180	2.8

(C. Ronsivalle et al, PAC05, Knoxville TN)

Peak current, normalized projected emittance, beam envelope and solenoid field map for the example compressor working points . (Parmela code , Np=200k)

Schematic layout for the 1 GeV phase:

Twiss parameters for the 1 GeV channel

C. Vaccarezza – 37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources

The BC2 compressor:

Parameter	Symbol	Unit	Value
Beam Energy	Е	GeV	0.5
Initial rms bunch length	σ_{zi}	mm	210
Finale rms bunch length	σ_{zf}	mm	87
Rms total incoming energy spread	σ_δ	%	.45
RMS uncorrelated relative energy spread	$\sigma_{_{\delta u}}$	10 ⁻⁵	0.6
Momentum compaction	R ₅₆	mm	26
Total chicane length	L _{total}	m	7.4
Length of each dipole magnet	L _B	m	0.25
Length of drift between 1 st and last two dipoles	⊿L	m	3.0
Length of drift between center two dipoles	∆L _c	m	0.40
Bend angle of each dipole	$ \theta_B $	deg	3.66
Maximum dispersion	$ \eta_{max} $	m	.25

SPAR

The DL1 dogleg:

Parameter	Symbol	Unit	Value
Beam Energy	Е	GeV	1.
Total horizontal beamline deflection	Δx	М	.46
Nominal rms bunch length	σ_z	μm	90
Rms core relative energy spread	σ_δ	%	<.1
Net momentum compaction	R ₅₆	mm	0
Length of each dipole magnet	L _B	m	.80
Bend angle of each dipole magnet	0 _H	deg	.80
Length of drift between center two dipoles	∆L _c	m	0.40
Maximum dispersion	$ \eta_{max} $	m	.25

SPAR

Photoinjector exit²

Elegant code results for the example beam and 1 GeV Linac

0.6

0.4

Slice analysis:

SPA

SASE performance E=1 GeV

Wavelength= 10.0 nm Undulator K= 2.055 Undulator period= 2.800 cm Pmax= 6.022 GW rms pulse length= 89.292 um rms pulse length=297.847 fsec saturation length= 24.000 m e-beam efficiency= 96.825% e-beam peak current= 1.681kA

e-beam efficiency= 92.812%

e-beam peak current= 1.681kA

30

Twiss parameters for the 2 GeV channel

C. Vaccarezza – 37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources

SASE performance E=2 GeV

First results with space charge & CSR from Parmela

..tracking the beam up to 1 GeV:

CSR +SC in BC2

Wavelength= 10.0 nm Undulator K= 2.055 Undulator period= 2.800 cm Pmax= 6.815 GW rms pulse length= 84.583 um rms pulse length=282.139 fsec saturation length= 24.000 m e-beam efficiency= 92.000% e-beam peak current= 1.863kA

C. Vaccarezza – 37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources

SPAR *

Project schedule & cost estimation Schedule:

- 2006-07: 1 year for Technical Design Report.
- 2006-09: Civil construction & site arrangement
- 2007-09: Device construction & procurement
- 2010-11: Installation & Commissioning

Cost :

- > 50 M€ for the 1 GeV first phase,
- > 50 M€ for the 2 GeV phase.