

LCLS Commissioning Plans

(Dec. 1, 2006 through Mar. 30, 2009,...and beyond)

J. Welch

ICFA FLS 2006

Acknowledgements

J. Arthur, R. Bionta, E. Bong, Y. Ding, D. Dowell, P. Emma, Z. Huang, P. Krejcik, K. LeCocq, C. Limborg, S. Milton, S. Moeller, H-D Nuhn, S. Reiche, R. Ruland, P. Stefan, H. Tompkins, J. Wu, and many others.

Overview of Beamlines and Timeline

Existing and refurbished housing

New housing construction. Completion by ~ Oct. 07 LTU: Linac to Undulator FEE: Front End Enclosure NEH: Near Experimental Hall FEH: Far Experimental Hall

BC1(2): Bunch compressors

Key Near-Term Dates

Laser Delivered	June 06
Laser Installed	Aug 06
Linac Shutdown Start	Aug 06
Gun Tested	Sept 06
Gun Installed	Nov 06

Commissioning – Tune-up 'Stoppers'

Full set of beam diagnostics at each tune-up point

Injector

- Drive Laser and delivery optics
- Gun
- Injector accelector
 - Linac accelerating modules
 - Transverse rf deflector
 - BC1
 - X band section
 - Straight ahead beam diagnostics

Thales Drive Laser System

Thales Drive Laser System

Injector - Gun

- Installation in Nov., after hot testing
- Commissioning starts with rf processing

Injector Through BC1 Commissioning

Jan 07 - Aug 07

Injector Through BC1 Commissioning (2)

BC2, LTU, Undulator and Beam Dump

- BC2 is commissioned simultaneously with installation of undulator and LTU beamlines.
- LTU include energy and 4-D transverse collimation to clean up beam before Undulator.
- Full energy and emittance measurement in LTU just before undulator.

Collimation in Linac-to-Undulator (LTU)

Undulator Commissioning

- Pre-Beam Commissioning
 - Control System
 - Component Position Monitoring System
 - Vacuum System
 - Magnet System
 - Beam Finder Wire System
 - Motion Control System
 - Temperature Monitoring System
 - System level software

Motion Control System

Component Position Monitoring System

Undulator Commissioning with Beam

- Start with undulator magnets rolled out, commission:
 - RF BPM's
 - Beam Finder Wires
 - Feedback systems
 - BBA system
 - MPS (machine protection system)
 - BBA (beam based alignment procedure)
- Roll magnets back in and redo BBA

BBA Procedure

- Basic Idea: Remove Dispersion
 - Measure trajectory for 3 different machine energies: 5.3 GeV, 6.5 GeV, 13.6 GeV
 - Correct dispersion by moving quadrupoles
 - Repeat process ≈ 3 times
 - Yields very straight, very smooth trajectories with low FEL phase errors.

FEL Beam Commissioning Goals

- Phase I Spontaneous Radiation (SR)
 - Relaxed beam requirements: γε < 4 μm, peak current > 100 A.
 - Commission x ray diagnostics and measure SR properties.

FEL Commissioning Goals (cont.)

- Phase II FEL Radiation
 - Near design quality beam: $\gamma \epsilon_{\text{slice}} < 1.2 \mu\text{m}$, peak current ≥ 3400 A.
 - Obtain SASE and measure FEL Radiation properties
 - "CD4" milestone
 - Establishes construction is complete
 - X Rays must reach the Far Hall, 10⁶ ph/mm² 0.1% BW in the FEE
- Phase III Transition to Operation
 - Follows CD4 milestone
 - Full rep rate and FEL Radiation power levels

FEL Commissioning - Phase I

- Using SR only
 - Verify apertures
 - Commission X ray diagnostics
 - Characterize SR from individual segments
 - Characterize SR from entire undulator
- X Ray diagnostics commissioning is interleaved with FEL beam commissioning

X Ray Beamlines and Diagnostics X Ray Commissioning Slit Diagnostics Collimator 1 Solid Package Attenuator Fast close valve Gas Attenuator Gas Detector Gas FEL Offset system Detector

Verify Apertures and Launch Angle

- Makes sure chamber is aligned with BBA determined trajectory.
 - Steer launch angle to maximum photon energy in spectrum
 - Misaligned aperture will shift spectrum toward red
 - 2. Interpret spatial distribution

Only first segment is inline, 32 segments "rolled out"

Verify Apertures and Launch Angle

- Makes sure chamber is aligned with BBA determined trajectory.
 - Steer launch angle to maximum photon energy in spectrum
 - Misaligned aperture will shift spectrum toward red

2. Interpret spatial distribution

Strong Energy-Angle Correlation

Spectrum shift measurement can be used to determine very small angles

Angle integrated spectrum may be used to avoid strong dependence on observation angle.

$$\lambda_1 = \frac{\lambda_u}{2\gamma^2} \left(1 + K^2 / 2 + \gamma^2 \theta^2 \right)$$

1 microradian = 1 part in 10^4

FEL Commissioning - Phase II

- Using FEL Radiation, at various energies
 - Find SASE signal
 - Calibrate diagnostics
 - Measure Gain Curves
 - Measure spectrum
 - Taper studies
 - Optimize gain
 - Get FEL Radiation on Mirror 1

Gain Curve Measurement (1)

1. Trajectory bump method

FEL Radiation alone is "turned off" by distorting orbit with a single corrector.

Spontaneous radiation is more or less constant.

Gain Curve Measurement (2)

Variable length undulator method

SR and FEL radiation are both "turned off" by removing segments

Stanford Synchrotron Radiation Laboratory

Commissioning StudiesUnder Developement

- K measurement 1 segment method
- K measurement 2 segment method
- Orbit measurement
- Taper/beam energy measurement
- Histogram FEL energy
- Jitter studies
- Laser heater studies
- Microbunching instability studies
- Mode size studies
- Number of modes
- Optimizing FEL gain
- Number of spikes
- Reflection studies
- SASE bandwidth as a function of z
- Slotted foil studies
- Spatial measurements of SR
- Spatial measurements of FEL
- Spectral measurements of SR
- Spectral measurements of FEL

- SR energy vs charge
- Undulator taper measurements
- Trajectory sensitivity studies
- Transverse coherence
- Wakefield studies
- FEL pointing studies
- FEL pointing stability studies

Conclusion

- LCLS commissioning starts this year, with full beamline commissioning starting in March 08
- We have many new and sophisticated devices and systems that most be brought up to spec.
 - Laser,rf gun, x band, BCs,Undulator motion control, CPMS,...
- Commissioning demands advanced diagnostic techniques
 - Slice parameters
 - Bunch lengths
 - SR and FEL radiation properities