Start-To-End Simulations for the European XFEL

- description of European XFEL beam line
- technical aspects of simulation
matching / codes / tools
- gun
- μ-bunch "instability"
laser heater / technical aspects of simulation
- European XFEL - segmentation (for simulation)
- method 1 (fast)
- method 2 (reference)
- method 3 (efficient \& accurate) - to be done

European XFEL, description, s2e home page

s2e simulation: technical aspects

rf settings: phase and amplitude settings are very sensitive wakes \& space charge effects change longitudinal profile significantly!
\rightarrow iterative optimization
matching: real
artificial
steering
bunch: $1 \mathrm{nC}, \sim 50 \mathrm{~A}$ (initial)
simulation: s2e particles (ASTRA-generator \& gun simulation)
$\mathrm{N}_{\mathrm{s} 2 \mathrm{e}} \approx 200000$
try to track these particles; avoid conversions to other distributions (if possible);

simulation tools

ASTRA: on-axis-tracking, rz-space charge, rf, magnets, no wakes

CSRtrack: non-linear motion effects, 1d CSR model, sub-bunch models

GENESIS: time dependent 3d FEL code
ELEGANT: rf, magnets, wakes, no space charge, 1d CSR model

utility programs

format conversion: ASTRA / CSRtrack / sdds
some simple manipulations of longitudinal phase space: add cavity wakes (based on point particle wakes, asymptotic fit to ECHO calculations), add space charge wakes (semi analytic model)
some simple manipulations of transverse phase space:
(transport matrices)
drift,
transport as defined by linear optics (design), matching

ASTRA: rz space charge model

2) ASTRA tracking of particles with extracted centroid offsets
3) transport centroid offsets (matrix)
4) restore new particle coordinates (add centroid offset)
remark: 3d space charge models create more noise (or need more particles)

CSRtrack

projected or 1d-CSR model:
particles distribution \rightarrow smooth 1d current \rightarrow 1d longitud. field \rightarrow particle energy low numerical effort
sub-bunch model:

1) create distribution of 'generating' 3d-sub-bunches

$$
\mathrm{N}_{\mathrm{g}} \approx 100000 ;\left(x, x^{\prime}, y=0, y^{\prime}=0, z, p_{z}, q\right)
$$

2) combine s2e-particles and 'generating' bunches
3) set charges of s2e-particles in combined distribution to zero
4) CSRtrack: self consistent tracking
$\sim 10^{1} \mathrm{~h}$ on linux cluster with $20 \mathrm{cpu}-\mathrm{s}$ (64bit)
5) extract coordinates of s2e particles
projected vs. sub-bunch:

1d model sufficient for centroid motion \& projected emittance;
XFEL: slice effects are weak;
uncorr. energy spread dominated by laser heater

semi analytic space charge model

steady state space charge impedance:

$$
R_{\text {pipe }}=\text { radius of beam pipe }
$$

$$
\left.\begin{array}{l}
\mathbf{E}(x, y, z, k)=\mathbf{E}\left(x, y, k, \sigma_{r}, R_{p i p e}, \gamma\right) \cdot \exp (-i k z) \quad \begin{array}{l}
\sigma_{r}=\text { rms width of round gaussian beam } \\
\gamma=\text { Lorentz factor }
\end{array} \\
Z_{s c}^{\prime}\left(k, \sigma_{r}, R_{p i p e}, \gamma\right)=\frac{\int \mathbf{u}_{z} \cdot \mathbf{E}\left(x, y, k, \sigma_{r}, R_{p i p e}, \gamma\right) \psi(x, y) d x d y}{\int \psi(x, y) d x d y} \\
\left.\psi(x, y)=\text { transverse profile (round, rms width } \sigma_{r}\right)
\end{array}\right] \begin{aligned}
& \text { e.g. free space, } k \sigma_{r} \gamma\left\langle<1: Z_{s c}^{\prime}\left(k, \sigma_{r}, R_{p i p e}, \gamma\right) \approx \frac{i Z_{0} k}{2 \pi \gamma^{2}} \ln \left(\frac{\gamma}{k \sigma_{r}}\right)\right. \\
& Z_{s c}(k, a \rightarrow b)=\int_{a}^{b} Z_{s c}^{\prime}\left(k, \sigma_{r}(z), R_{p i p e}, \gamma(z)\right) d z
\end{aligned}
$$

with:

$$
\sigma_{r}(z)=\sqrt{\frac{\varepsilon_{n}}{\gamma(z)} \beta_{\text {twiss }}(z)}
$$

$\varepsilon_{n}=$ normalized design emittance

$$
\begin{aligned}
& \beta_{\text {twiss }}(z) \approx \sqrt{\frac{\beta_{x}(z)^{2}+\beta_{y}(z)^{2}}{2}} \\
& \beta_{x}, \beta_{y}=\text { beta function }
\end{aligned}
$$

gun

ASTRA simulation

 "black box"(ASTRA input from K.Flöttmann)
1nC, 200000 particles

energy-offset correlation after gun

energy-offset correlation

μ-bunch "instability"

picture from
Z. Huang, J.Wu: Microbunching instability due to bunch compression http://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_38.pdf
impedances (steady state):

$$
\begin{aligned}
& \left.Z_{s c}^{\prime}\left(k, \sigma_{r}, R_{\text {pipe }}, \gamma\right) \quad \approx \frac{i Z_{0} k}{2 \pi \gamma^{2}} \ln \left(\frac{\gamma}{k \sigma_{r}}\right) \text { (free space, } k \sigma_{r} \gamma \ll 1\right) \text { "SC-instability" } \\
& Z_{\text {CSR }}^{\prime}\left(k, R_{\text {curv }}\right) \approx Z_{0} \frac{\Gamma(2 / 3)}{2 \pi} \sqrt[3]{\frac{k}{3 i R_{\text {curv }}^{2}}} \quad \text { "CSR-instability" }
\end{aligned}
$$

gain curves of μ-bunch "instability"

μ-bunch "instability", numerical aspects

1) μ-bunch-gain calculations are not subject of full s2e simulations
2) \rightarrow separate investigations

CSR: integral equation method (limited applicability) projected method: modulated beam, 1-and 2-stage compression SC: impedance + r56
3) s2e simulations:
avoid artificial instability
$\mathrm{N}_{\mathrm{s} 2 \mathrm{e}} \ll$ number of electrons \rightarrow use smoothing techniques
1d methods: adaptive filtering techniques
ASTRA: resolution of longitudinal mesh for calculation of space charge field

CSRtrack sub-bunch-method: use of 'generating' sub-bunches

European XFEL, segmentation

 dogleg
$4 x$ module $+2 x$ module- 3 rd $\rightarrow 500 \mathrm{MeV}$
bc $1 \rightarrow \sim 1 \mathrm{kA}$
12 x module $\rightarrow 2 \mathrm{GeV}$
bc2 $\rightarrow \sim 5 \mathrm{kA}$
main linac $\rightarrow 17.5 \mathrm{GeV}$
collimator
beam distribution ... undulators ...

European XFEL, segmentation

method 1 - fast

ASTRA
 CSRtrack 'projected'
 rf-field
 cavity wake \& s.c. field
 GENESIS

method 1

after BC2

method 1

after BC2

after collimator

norm. emit. hor\&ver / um; current ${ }^{*}$ const

method 1 - GENESIS

TESLA-FEL Report 2005-10: Impact of Undulator Wake-Fields and Tapering on the European X-Ray FEL Performance

method 2 - reference

ASTRA

CSRtrack
sub-bunch

ELEGANT $\begin{aligned} & \text { rf-field } \\ & \text { cavity wake \& s.c. field }\end{aligned}$
GENESIS

method 2

Address http://wwww.desy.de|xfel-beam/s2e/xfel_v4.html

European XFEL

Start-to-End Simulations 2006

Schematic Layout of the XFEL

- Input field maps for ASTRA: aperture, solenoids, if qun, 9-cell structure, half-module
- Input files for Poisson and Superfish: solenoids, rf qun, 9-cell structure

method 1

method 2
current \& slice emittance

method 1
method 2
long. phase space

method 1

method 2

slice miss-match parameter with respect to the slice with the peak current (self-miss-match)

GENESIS: method 1 vs. method 2

the radiation energy along the undulator

the radiation power along the bunch at $\mathrm{z}=130 \mathrm{~m}$

method 3 - accurate\&effcient (to be done)

ASTRA

CSRtrack CSRtrack
'projected' sub-bunch

ELEGANT	$\begin{array}{l}\text { rf-field } \\ \text { cavity wake \& s.c. field }\end{array}$

GENESIS

ASTRA (method 2) vs. ELEGANT (method 3)

linac before bc1

