Beam Physics Highlights of the FERMI@Elettra Project

S. Di Mitri

on behalf of the Accelerator Optimization Group:
M. Cornacchia, P. Craievich, S. Di Mitri, G. Penco, M. Trovo’, ST
I. Pogorelov, J. Qiang, M. Venturini, A. Zholents, LBNL
P. Emma, Z. Huang, R. Warnok, J. Wu, SLAC
D. Wang, MIT

FLS Workshop, May 2006, Hamburg

- Outlook
- FEL Performances
- The Accelerator
- Wakefields
- Electron Beam Physics
- Quadratic energy chirp
- Cubic energy chirp
- Reverse tracking
- Jitter in the longitudinal phase space
- Beam breakup
- Simulation results
- "Medium" bunch
- "Long" bunch
- References

Outlook - FEL PERFORMANCES

- Seeded Harmonic Cascade FEL for EUV and Soft X-rays
- Single Pass FEL User Facility:
- 100-40 nm single stage
- 40-10 nm two stages cascade
- 100 's MW to GW's of peak power with 10^{13} to 10^{14} photons per pulse and rep. rate from 10 Hz to 50 Hz
- 50 fs to 1 ps photon pulse length
- Electron beam energy fixed to 1.2 GeV

Outlook - THE ACCELERATOR

	"Short" bunch	"Medium" bunch	"Long" bunch
Bunch length	200 fs (flat part)	700 fs (flat part)	1.4 ps (flat part)
Peak current	800 A	800 A	500 A
Emittance(slice)	$1.5 \mu \mathrm{~m}$	$1.5 \mu \mathrm{~m}$	$1.5 \mu \mathrm{~m}$
Energy spread(slice)	$<150 \mathrm{keV}$	$<150 \mathrm{keV}$	$<150 \mathrm{keV}$
Flatness, $\left\|\mathrm{d}^{2} \mathrm{E} / \mathrm{dt}^{2}\right\|$		$<0.8 \mathrm{MeV} / \mathrm{ps}^{2}$	$<0.2 \mathrm{MeV} / \mathrm{ps}^{2}$
S. Di Mitri - FLS2006			

Outlook - WAKEFIELDS

	S0A, S0B	CERN $2 / 3 \pi$	BTW $3 / 4 \pi$
f [MHz]	2997.74	2997.74	2997.74
R iris [mm]	9.7 (avg)	10.8 (avg)	5.0
\# cells	93	135	162
Lcell [mm]	33.33	33.32	37.50
G [MV/m]	14.1	10.4	19.5

E-Beam Physics - QUADRATIC ENERGY CHIRP

- Sources: RF waveform and longitudinal wakefields
- Effects: less efficient compression
- Solution: increase the amplitude of the harmonic linearizer, while phase is locked at $\Delta \phi=-90^{\circ}$
- Cons: beam energy lowered, high phase sensitivity, tight alignment

$$
\begin{array}{ll}
1^{\text {st }} \text { step } & \phi(\text { Linac } 1)=-39^{\circ} \\
& V(X-\text { band })=14 \mathrm{MV}
\end{array}
$$

$$
\begin{aligned}
& \phi(\text { Linac } 1)=-44^{\circ} \quad 2^{\text {nd }} \text { step } \\
& V(X \text {-band })=20 M V
\end{aligned}
$$

E-Beam Physics - CUBIC ENERGY CHIRP

- Sources: space charge dynamics and longitudinal wakefields
- Effects: bifurcations in phase space and current spikes
- Solution: phase of the harmonic linearizer set off-crest
- Cons: the knob is weak

E-Beam Physics - REVERSE TRACKING

- Valid for "frozen" beams (see, Appendix)
- It predicts a ramped current profile from the Injector.
- Confirmed by the forward tracking.

S. Di Mitri - FLS2006 courtesy M. Cornacchia, P.Emma, G. Penco, A. Zholents

E-Beam Physics - PHASE SPACE JITTER

- A seed laser with a linear frequency chirp will allow for compensating for a frequency chirp due to a quadratic energy variation in the electron $(\Delta \omega \sim \Delta \mathrm{E} / \Delta \mathrm{t}) \Rightarrow$ a small jitter of the $2^{\text {nd }}$ order component is required.

Global quadratic term $\approx 3 \times 10^{-6} \mathrm{MeV} / \mathrm{ss}^{2}$, rms variation of a quadratic term in 400 seeds is 14%

Global quadratic term $\approx 1.4 \times 10^{-6}{\mathrm{MeV} / \mathrm{ss}^{2}}^{2}$, rms variation of a quadratic term in 400 seeds is 29%

E-Beam Physics - BEAM BREAKUP (1)

120 trajectories in the Linac. The conventional correction is NOT sufficient to avoid the BBU instability.

"Banana" shapes (in x and y plane) for 120 trajectories in the Linac. The bunch tail deviates from the head of about $6 \sigma_{x, y}$ at the Linac end.

E-Beam Physics - BEAM BREAKUP (2)

Trajectory local bumps cancel "banana" shape.

Jitters of the launching error does not affect a "banana" previously compensated.

Simulation Results - MEDIUM BUNCH

Simulation Results - LONG BUNCH

References

- C. Bocchetta et al., Proc. of the EPAC06 Conf., Edinburgh, UK (June 2006)
- M. Cornacchia et al., ST/F-TN-05/24 (ST Tech. Note, November 2005)
- P. Craievich and S. Di Mitri, ST/F-TN-05/26 (St Tech. Note, November 2005)
- S. Di Mitri et al., Proc. of the FEL05 Conf., SLAC, CA (August 2005)
- P. Craievich and S. Di Mitri, Proc. of the FEL05 Conf., SLAC, CA (August 2005)
- P. Craievich et al., ST/F-TN-05/01 (St Tech. Note, March 2005)
- Z. Huang et. al, Phys. Rev. ST - Acc. and Beams, v.5, 074401(2002)
- Z. Huang et. al, Phys. Rev. ST - Acc. and Beams, V.7, 074401, (2004).

Acknowledgement

The author thanks M. Borland for his fundamental support using the Elegant tracking code and Sdds post-processing.

Thank. you for your attention

APPENDIX: Justification for a reverse tracking

1) Transformation through linac for a "frozen" longitudinal density distribution:

$$
\delta_{f}\left(z_{f}\right)=\delta_{i}\left(z_{i}\right)+e U \cos \left(k_{r f} z_{i}\right)+e \int_{-\infty}^{z_{i}} \rho(s) W\left(s-z_{i}\right) d s
$$

Since $\rho(s)$ is the same at the beginning and at the end of the linac, then $\delta_{i}\left(z_{f}=z_{i}\right)$ at the beginning can be found from above equation for a given δ_{f}
2) Transformation through a chicane for a "frozen" energy distribution:

$$
z_{f}\left(\delta_{f}\right)=z_{i}+R_{56} \delta_{i}+T_{566} \delta_{i}^{2}+\ldots
$$

Since $\delta(z)$ is the same at the beginning and at the end of the chicane ($\delta_{\mathrm{f}}=\delta_{\mathrm{j}}$), then z_{i} at the beginning can be found from above equation for a given z_{f}

