Quantum Regime of SASE-FEL

R. Bonifacio ⁽¹⁾, <u>N. Piovella</u> ^(1,2), G.R.M. Robb ⁽³⁾, A. Schiavi ⁽⁴⁾

⁽¹⁾ INFN-MI, Milan, Italy.

- ⁽²⁾ Dipartimento di Fisica, Univ. of Milan, Italy
- ⁽³⁾ SUPA, Dep. of Physics, Univ. of Strathclyde, Glasgow, UK
- ⁽⁴⁾ Dipartimento di Energetica, Univ. of Rome "La Sapienza" & INFN, Italy

Outline

1. Classical FEL, Superradiance and SASE

2. Quantum FEL model

3. Gain and spectrum in quantum FEL

4. Spectral "purification" in Quantum SASE

5. Fluctuations and energy spread effect

6. Towards a Quantum x-ray SASE-FEL

CLASSICAL MODEL

$$\frac{\partial^2 \theta_j}{\partial \overline{z}^2} = -(Ae^{i\theta_j} + C.C.)$$
$$\frac{\partial A}{\partial \overline{z}} + \frac{\partial A}{\partial z_1} = \frac{1}{N} \sum_{j=1}^{N} e^{-i\theta_j}$$

R.Bonifacio, C.Pellegrini, L.Narducci, Opt. Comm. (1984)

$$\overline{z} = z/L_g$$

$$z_1 = (z - v_r t)/L_c$$

$$L_g = \lambda_w / 4\pi\rho$$
gain length
cooperation length

 $\theta = (\mathbf{k} + \mathbf{k}_{w})\mathbf{z} - \omega \mathbf{t};$

$$\rho \mid A \mid^{2} = \frac{P_{e.m.}}{P_{beam}}$$

$$\rho \propto \frac{1}{\gamma_r} \! \left(\frac{a_w \lambda_w}{\sigma} \right)^{2/3} \! I^{1/3} \label{eq:rho_rho}$$

FEL parameter

HIGH-GAIN REGIME

- exponential growth of intensity and bunching
- start up from noise
- saturation at A~1 (P_{rad} ~ρ P_{beam}) after several L_g

wiggler length (several L_g)

neglecting SLIPPAGE:

 $\frac{\partial A}{\partial A} = 0$ ∂z_1

(STEADY-STATE regime)

electrons behave as coupled pendula in a self-consistent potential:

SLIPPAGE EFFECT: SUPERRADIANCE

R. Bonifacio, B.W. McNeil, P. Pierini PRA (1989)

Particles at the trailing edge of the beam never receive radiation from particles behind them: they radiate in a **SUPERRADIANT PULSE** or **SPIKE** which propagates forward.

if $L_b << L_c$ the SR pulse remains small (weak SR).

 \longrightarrow

if $L_b >> L_c$ the weak SR pulse gets amplified (strong SR) as it propagates forward through beam with no saturation.

The SR pulse is a self-similar solution of the propagation equation.

STRONG SUPERRADIANCE from a coherent seed

$$\frac{\partial A}{\partial \overline{z}} + \frac{\partial A}{\partial z_1} = \left\langle e^{-i\theta} \right\rangle \qquad \left(z_1 = \frac{z - vt}{L_c} \right)$$

STRONG SUPERRADIANCE from a detuned coherent seed

$$\frac{\partial A}{\partial \overline{z}} + \frac{\partial A}{\partial z_1} = \left\langle e^{-i\theta} \right\rangle \qquad \left(z_1 = \frac{z - vt}{L_c} \right)$$

8

 L_{b} =30 L_{c} , 0<z<50 L_{g} , detuned seed (δ =2)

SASE mode for FELs

Ingredients of <u>Self Amplified Spontaneous Emission</u> (SASE)

- i) Start up from noiseii) Propagation effects (slippage)
- iii) Superradiance instability

R.Bonifacio, L. De Salvo, P.Pierini, N.Piovella, C. Pellegrini, PRL (1994)

each cooperation length in the e-beam radiates a SR spike which is amplified when it propagates forward on the beam

SASE mode is proposed as a method for producing 'coherent' X-ray radiation (LCLS, Desy,...)

DRAWBACKS OF 'CLASSICAL' SASE

Time profile has many random spikes $(n = L_b/L_c)$

Broad and noisy spectrum at short wavelengths (x-ray FELs)

simulations from **DESY** for the SASE experiment

NEW QUANTUM-SASE REGIME

- In a QUANTUM REGIME an FEL behaves as a TWO-LEVEL system
- electrons emit coherent photons as in a LASER
- in the SASE mode the spectrum is intrinsically narrow ('quantum purification')
- the transition between the classical and the quantum regimes depends on a single parameter:

$$\overline{\rho} = \left(\frac{mc \ \gamma_r}{\hbar k}\right) \rho$$

QUANTUM EFFECTS IN FELs

CLASSICAL LIMIT OF FEL:

momentum spread:

$$mc(\delta\gamma) >> \hbar k$$

: photon recoil

Since in the classical regime

$$(\delta \gamma / \gamma_r) \approx \rho \quad \Longrightarrow \quad \overline{\rho} >> 1 \quad \overline{\rho} = \left(\frac{mc \ \gamma_r}{\hbar k}\right) \rho$$

many recoils implies many photons, hence.. classically, each electron emit many photons

$$\frac{\langle N \rangle_{photon}}{N} = \overline{\rho} |A|^2 >> 1$$

(since A~1)

the **QUANTUM REGIME** of an FEL occurs when:

$$mc(\delta\gamma) \le \hbar k$$
 $\overline{\rho} < 1$

each electron emits only a single photon!

Quantum FEL behaves like a two-level system (i.e. a 'laser')

 $(\overline{\rho} | A |^2 = 1)$

QUANTUM FEL MODEL

Procedure :

Describe N particle system as a Quantum Mechanical ensemble

Write a Schrödinger equation for macroscopic wavefunction

$$\Psi(\theta, \overline{z})$$

Include slippage (i.e. propagation) using a multiple-scaling approach

Canonical Quantization

$$\begin{vmatrix} \dot{\theta} &= \frac{p}{\overline{\rho}} = \frac{\partial H}{\partial p} \\ \dot{p} &= -\overline{\rho} \left(Ae^{i\theta} + c.c \right) = -\frac{\partial H}{\partial \theta} \end{vmatrix}$$

$$H = \frac{p^2}{2\overline{\rho}} - i\overline{\rho} \left(Ae^{i\theta} - c.c.\right)$$

$$i\frac{\partial\Psi}{\partial\overline{z}} = -\frac{1}{2\overline{\rho}}\frac{\partial^{2}\Psi}{\partial\theta^{2}} - i\overline{\rho}\left[A(\overline{z})e^{i\theta} - c.c.\right]\Psi$$
$$\frac{dA}{d\overline{z}} = \int_{0}^{2\pi} d\theta \left|\Psi(\theta,\overline{z})\right|^{2}e^{-i\theta} + i\delta A$$

G. Preparata, PRA (1988)

QUANTUM FEL PROPAGATION MODEL

 θ describes spatial evolution of Ψ on scale of λ z₁ describes spatial evolution of A and Ψ on scale of L_c >> λ .

$$(z_1 = (z - vt) / L_c)$$

Using the multiple-scale method we have derive the model:

$$i\frac{\partial\Psi}{\partial\overline{z}} = -\frac{1}{2\overline{\rho}}\frac{\partial^{2}\Psi}{\partial\theta^{2}} - i\overline{\rho}\left[A\left(\overline{z},z_{1}\right)e^{i\theta} - c.c.\right]\Psi$$
$$\frac{\partial A}{\partial\overline{z}} + \frac{\partial A}{\partial z_{1}} = \int_{0}^{2\pi} d\theta \left|\Psi\left(\theta,\overline{z},z_{1}\right)\right|^{2}e^{-i\theta} + i\delta A$$

R. Bonifacio, N. Piovella, G.R.M. Robb, M. Cola, Optics Comm. (2005)

Momentum representation:

$$\Psi(\theta,\overline{z},z_1) = \sum_{n=-\infty}^{\infty} c_n(\overline{z},z_1) e^{in\theta}$$

 $e^{in\theta}$ is the momentum eigenstate corresponding to eigenvalue $n(\hbar k)$

<u>discrete</u> changes of momentum : $p_z \sim mc(\gamma - \gamma_r) = n (\hbar k)$, n=0,±1,..

$$p_z \uparrow n=1$$

 $n=0$ _____ $\uparrow \hbar k$

$$\frac{\partial c_n}{\partial \overline{z}} = -\frac{in^2}{2 \overline{\rho}} c_n - \overline{\rho} \left(Ac_{n-1} - A^* c_{n+1} \right)$$
$$\frac{\partial A}{\partial \overline{z}} + \frac{\partial A}{\partial z_1} = \sum_{n=-\infty}^{\infty} c_n c_{n-1}^* + i \delta A$$

 $\frac{\partial A}{\partial z_1} = 0$

classical limit is recovered for

 $\overline{\rho} >> 1$

many momentum states occupied, both with n>0 **and** n<0

Quantum limit for $\overline{\rho} \leq 1$

Only TWO momentum states : p=0 and $p=-\hbar k$

Bunching and density grating

δ

21

 $\overline{\rho} > 0.4$ lines overlap: - transition to classical regime.

for

SASE : NUMERICAL SIMULATIONS using the quantum model

$$L_{b} = 30L_{c}$$

CLASSICAL REGIME:
$$\overline{\rho} = 5$$

QUANTUM REGIME: $\bar{\rho}=0.1$

momentum distribution for SASE

CLASSICAL REGIME:
$$\overline{\rho} = 5$$

QUANTUM REGIME: $\bar{\rho}=0.1$

both n<0 and n>0 occupied

sequential SR decay, only n<0

 $\bar{\rho} = 0.3 \ 1/\bar{\rho} = 3.3$

main goals:

- 1. quantum 3D model
- 2. development of a 3D numerical code
- 3. definition of the experimental constraints
- 4. demonstration of the feasibility of a Quantum-SASE FEL experiment

shot-to-shot fluctuations in the **QUANTUM SASE**

INITIAL ENERGY SPREAD EFFECTS:

$$\frac{\partial c_{n}}{\partial \overline{z}} = -in \left(\frac{n}{2 \overline{p}} + \delta \right) c_{n} - \overline{p} \left(Ac_{n-1} - A^{*} c_{n+1} \right)$$

$$\frac{\partial A}{\partial \overline{z}} + \frac{\partial A}{\partial z_{1}} = \sum_{n=-\infty}^{\infty} \int d \delta G \left(\delta \right) c_{n} c_{n-1}^{*}$$

$$G(\delta) ; initial distribution of width \sigma_{\delta}$$

linear theory \rightarrow GENERALIZED DISPERSION relation: (A

$$\left(A\propto e^{i\lambda\overline{z}}\right)$$

$$\left| \lambda - \Delta + \overline{\rho} \int_{-\infty}^{\infty} \frac{d\delta}{\lambda + \delta} \left\{ G \left(\delta + \frac{1}{2\overline{\rho}} \right) - G \left(\delta - \frac{1}{2\overline{\rho}} \right) \right\} = 0$$

$$\left(\Delta = \overline{\delta} + \frac{n}{\overline{\rho}} - \frac{\Delta\omega}{\rho\omega}\right)$$

N. Piovella, R. Bonifacio, NIMA (2006)

Z

Steady state + energy spread: rhobar=0.1,deltabar=5.5,Delta=1

zbar

$$\left(\frac{\delta\gamma_0}{\gamma_0} = \rho\right)$$

coherence is preserved if:

$$mc\delta\gamma_0 < \hbar k$$

$$\left(\sigma << \frac{1}{\overline{\rho}}\right)$$

but gain is reduced if

$$\frac{\delta\gamma_0}{\gamma_0} \ge \rho\sqrt{\overline{\rho}}$$

CONCLUSIONS

- The new QUANTUM regime of SASE-FEL could generate x-ray radiation with a much narrower spectrum than classical SASE
- Our quantum propagation model describes both classical ($\overline{\rho}$ >>1) and quantum ($\overline{\rho}$ <1) SASE mode operation.
- In the quantum regime FELs behaves as two-level system (Laser), with multiple lines in the spectrum.
- We are working to extend the 1D Quantum FEL model into a full 3D model, with an e.m. wiggler (QFEL project).