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Outline

1.Classical FEL, Superradiance and SASE

2.Quantum FEL model

3.Gain and spectrum in quantum FEL

4.Spectral “purification” in Quantum SASE

5.Fluctuations and energy spread effect

6.Towards a Quantum x-ray SASE-FEL
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HIGH-GAIN REGIME

• exponential growth of intensity and bunching
• start up from noise
• saturation at A~1 (Prad ~ρ Pbeam) after several Lg
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SLIPPAGE EFFECT: SUPERRADIANCE
R. Bonifacio, B.W. McNeil,
P. Pierini PRA (1989)

Particles at the trailing edge of the beam never receive 
radiation from particles behind them: they radiate in a 
SUPERRADIANT PULSE or SPIKE which propagates forward.

if Lb << Lc the SR pulse remains small (weak SR). 

if Lb >> Lc the weak SR pulse gets amplified (strong SR) as it 
propagates forward through beam with no saturation.

The SR pulse is a self-similar solution of the propagation equation.
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Ingredients of Self Amplified Spontaneous Emission (SASE)

i) Start up from noise
ii) Propagation effects (slippage)
iii) Superradiance instability

each cooperation length in the e-beam radiates a SR  spike 
which is amplified when it propagates forward on the beam

SASE mode is proposed as a  method for producing 
‘coherent’ X-ray radiation (LCLS, Desy,..)

SASE mode for FELs

R.Bonifacio, L. De Salvo, P.Pierini, 
N.Piovella, C. Pellegrini, PRL (1994)
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DRAWBACKS OF  ‘CLASSICAL’ SASE

simulations from DESY for the SASE experiment

Time profile has many
random spikes  (n= Lb/Lc)

Broad and noisy spectrum at
short wavelengths (x-ray FELs)
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NEW QUANTUM-SASE REGIME

• In a QUANTUM REGIME an FEL behaves as a TWO-
LEVEL system

• electrons emit coherent photons as in a LASER
• in the SASE mode the spectrum is intrinsically narrow

(‘quantum purification’)
• the transition between the classical and the quantum

regimes depends on a single parameter:
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CLASSICAL LIMIT OF FEL:

kmc h>>)(δγmomentum spread: : photon recoil

Since in the 
classical regime ( ) ργδγ ≈r/ 1>>ρ

many recoils implies many photons, hence..
classically, each electron emit many photons
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QUANTUM EFFECTS IN FELs

(since A~1)
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the QUANTUM REGIME of an FEL occurs when:

kmc h≤)(δγ 1<ρ

each electron emits only a single photon! )1||( 2 =Aρ

COHERENCE

Quantum FEL behaves like a two-level system
(i.e. a ‘laser’)
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Procedure : 

Describe N particle system as a Quantum Mechanical ensemble

Write a Schrödinger equation for macroscopic wavefunction 

),( zθΨ

QUANTUM FEL MODEL

Include slippage (i.e. propagation)
using a multiple-scaling approach ),,( 1zzθΨ
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Canonical Quantization
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QUANTUM FEL PROPAGATION MODEL
θ describes spatial evolution of  Ψ on scale of λ
z1 describes spatial evolution of A and Ψ on scale of Lc >> λ.
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Momentum representation:

discrete changes of momentum : pz~mc(γ− γr)= n (hk) ,
n=0,±1,..

n=1
pz khn=0

n=-1

einθ is the momentum eigenstate 
corresponding to eigenvalue n(ћk)∑

∞

−∞=

θ=θΨ
n

in
1n1 ezzczz ),(),,(

( )

Aicc
z
A

z
A

cAAccin
z

c

n
nn

nnn
n

δ

ρ
ρ

+=
∂
∂

+
∂
∂

−−−=
∂

∂

∑
∞

−∞=
−

+−

*
1

1

1
*

1

2

2



18

classical limit 
is recovered for

many momentum states 
occupied, 

both with n>0 and n<0

1>>ρ
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Quantum limit for

θθ iezczcz −
−+∝Ψ )()(),( 10

Only TWO momentum states : p=0 and p= - ћk

n=0

n=-1

Dynamics are those of 
a 2-level system coupled to 
an optical field, as in a LASER

1≤ρ
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( )zieA λ∝Quantum Linear Theory
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SASE : NUMERICAL SIMULATIONS 
using the quantum model

cb L30L =

CLASSICAL REGIME: 5=ρ QUANTUM REGIME: 1.0=ρ



24Classical behaviour : 
both n<0 and n>0 occupied

CLASSICAL REGIME: 5=ρ QUANTUM REGIME: 1.0=ρ

momentum distribution for SASE

Quantum behaviour : 
sequential SR decay, only n<0
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INFN project for a feasibility study of a 
quantum x-ray FEL (~1 Ǻ) in the SASE 
mode with a laser wiggler
(0.8 μm, 10-100 TW)

 

under development at LNF (Frascati) for SPARC/PLASMON-X

main goals:
1. quantum 3D model
2. development of a 3D numerical code
3. definition of the experimental constraints
4. demonstration of the feasibility of a Quantum-SASE FEL experiment
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INITIAL ENERGY SPREAD EFFECTS:
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QUANTUM SASE with spread (ρ=0.1 and σ=1) ⎟⎟
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CONCLUSIONS

• The new QUANTUM regime of SASE-FEL could generate 
x-ray radiation with a much narrower spectrum than classical SASE

• Our quantum propagation model describes both classical (ρ>>1)
and quantum (ρ<1) SASE mode operation.

• In the quantum regime FELs behaves as two-level system (Laser),
with multiple lines in the spectrum.

• We are working to extend the 1D Quantum FEL model into a full 
3D model, with an e.m. wiggler (QFEL project).
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