DISPERSION MEASUREMENT AND CORRECTION IN THE VUV-FEL (FLASH)

Winni Decking, Torsten Limberg, Eduard Prat 37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources Hamburg, 16 May 2006

Index
> Introduction
> Dispersion Measurement
>Procedure
$>$ Measurements
> Dispersion Correction
>Procedure
$>$ Response matrix measurements
$>$ Dispersion correction simulations
$>1^{\text {st }}$ dispersion correction measurements
>Summary and next steps

Introduction

$$
\eta_{x}=\frac{\Delta x}{\Delta p / p} \quad \sigma=\sqrt{\varepsilon \cdot \beta(s)+\eta(s)^{2} \cdot\left(\frac{\Delta p}{p}\right)^{2}}
$$

Goal: dispersion in the undulator of $\mathbf{1 ~ c m}$

VUV-FEL (FLASH)

Generation mechanisms

Source	Error (in all the lattice)	Error (only in the dog-leg)	Dispersion (after the dog-leg)
Quad malign	17 um	50 um	
Dipole field error	0.25%	5%	$\sim 1 \mathrm{~cm}$
Quad field error	0.75%	0.75%	

$>$ Quad misalignment seems to be the most important dispersion source $>$ Dog-leg is a critical zone for dispersion generation

Dispersion Measurement Procedure

> Measure the orbit for different energies

1. Change RF gradient of the module
2. Apply orbit correction to restore launch conditions after the module
3. Read BPM positions downstream last correction BPM
$>$ Derive the dispersion

Dispersion Measurements (Nov. 05)

From DBC2

From ACC4-5

Dispersion Correction Algorithm

It corrects both orbit and dispersion, using the orbit and dispersion response matrices
>Orbit response term $\quad O_{i, j}=\frac{\Delta x_{i}}{\Delta \theta_{j}} \quad$ DDispersion response term $\quad D_{i, j}=\frac{\Delta D_{i}}{\Delta \theta_{j}}$
$\begin{array}{llll}\Delta x_{i} / \Delta D_{i} & -\cdots-----> & \text { change of the orbit / dispersion at the BPM } i \\ \Delta \theta_{j} & -\cdots----> & \text { change of the kick angle of the steerer } j\end{array}$

$$
\sum\left[\binom{\underline{x}_{\text {meas }}}{\underline{d}_{\text {meas }}}-\binom{\underline{x}}{\underline{d}}\right]^{2}=\min \Rightarrow \Delta \underline{\theta}
$$

Dispersion Correction Procedure

Response matrix measurements (April 06)
> For dispersion correction, optics of the machine have to be close to the design optics or one has to use the measured response matrices
> Comparing the measured and simulated orbit and dispersion response will let to fix possible optic errors
> We have measured the complete response for the machine and the data is presently being analyzed

Dispersion correction simulations
vertical plane, $\mathrm{w}=0.1$; quad malign $=200 \mathrm{um}$, dipole field error $=1 \%$;
quad field error $=1 \%$; bpm noise $=20 u m ;$ bpm off-set $=100 u m ;$ all bpm's ; all steerers

Dispersion correction simulations

Peak and deviation of the orbit and dispersion for the different simulations

$1^{\text {st }}$ Dispersion correction measurements (April 06)

Measurement of Horizontal Orbit and Dispersion along the VUV-FEL before and after correction (3 iterations)

DESY
$1^{\text {st }}$ Dispersion correction measurements (April 06)

Summary and next steps

Summary:

$>$ A tool for measuring and correcting orbit and dispersion has been developed
$>$ Several dispersion measurements done on November 05
> Complete response matrix measurement has been done
$>$ Simulations of dispersion correction have been performed
\Rightarrow Dispersion correction in the undulator in the horizontal plane done

Next steps:

> Analyze data from orbit and dispersion response measurements
$>$ Make dispersion correction program more user friendly
> Correct dispersion in vertical plane

