

What are the Optimal Parameters for Superconducting Cavities of an ERL Light Source? Mike Dykes

- Gradient & Qo
 - Frequency
 - Operating Temperature
- HOMs
- Coupling Q_{Ext}
 - Couplers
- Tuners
 - RF Control
 - Microphonics

- Need 20MV/m with $Qo = 10^{10}$
- Why?
 - Dynamic losses
 - Cost ptimisation

Gradient

ASTeC

admator solawos and tashnology

Accelerating Gradient

to be modified to give more LH₂ flow. Need larger diameter spout and two phase line

ASTeC

Fls2006, DESY 15-19 May 2006

Frequency Options 1

Brokhaven National Lab System (700MHz)

Frequency Options 2

Jefferson Laboratory System (750MHz)

- Many schemes will work equally well, (except for loop couplers).
 Based on simulation and initial experiments
- Q = 10^3 to 10^4 which is good enough for 1 A machines.
- HOM power is a concern

Average HOM losses per cavity given by P = loss factor x single bunch charge x beam current

- = 176 watts
- If monopole mode excited could be $P = (R/Q)QI^2$

Could be as much as 1 kW

HOMs

3+3

26 W

200 W

80 K

1.4 – 100 GHz

Helium Gas

TT2, hex Z, C10

Waveguide Damping

Tuning - Slow

