Vacuum and Aperture Needs for ERL Light Sources

R. Hajima Japan Atomic Energy Agency

Acknowledgement

S. Sakanaka, T. Honda, Y. Tanimoto (KEK)

beam pipe

Q-mag. duct of JAEA-ERL ICF-114 flange, 45 mm inner diameter

JLAB IR-upgrade, 3-inch apertures from the linac to the wiggler

R. Hajima, FLS-2006, May 18, 2006 DESY

Bending magnet duct of APS equipped with pumping antechamber

Light Source

high flux photons = gas desorption

equipped with distributed pump --- NEG, sputter ion, Ti sublimation

Vacuum and Aperture for ERL LS

- large amount of gas desorption by synchrotron radiation
- scattering of electrons by gas molecules
- beam loss is critical for radiation shielding
- ion trapping may result in instability and additional beam loss

Interaction between electrons and residual gas atoms

Classification by S.P.Møller, CERN Acc. School (1999)

Beam-loss Tolerance

Storage Ring

beam loss \rightarrow particle loss \rightarrow shorten the lifetime circumstance ~ 1km, lifetime > 10hrs

beam loss $< 10^{-10}$ / turn

ERL

particle-loss is tolerable, if it is well-managed.

energy-loss by synchrotron radiation ~ 10^{-3} / turn

beam loss $<< 10^{-3}$ / turn to keep energy recovery

is "beam loss < 10⁻¹⁰ / turn" necessary to keep radiation level same as storage rings ?

Inelastic Scattering (Bremsstrahlung)

electrons may lose their energy by scattering with residual gas molecules

"Bremssttrahlung"

Elastic Coulomb Scattering

R. Hajima, FLS-2006, May 18, 2006 DESY

Example – KEK-ERL (2001 version)

 $\beta_c \sim 10m$ $\beta_{ave} \sim 10m$

R. Hajima, FLS-2006, May 18, 2006 DESY

8855

ID.

10

ĂĂĿĿĂĂ

PO

6666

6.8

0.1 0.0

(H) ""

Cross section of scattering and beam loss

Assuming "CO" only.

10⁻⁷ Pa = 0.75 x 10⁻⁹ Torr

Vacuum Pump Configuration – LBL LUX

10

Vacuum System for High-Average Current Machines

KEK-B

H. Hisamatsu et al., EPAC-2000

APS

P. Den Hartog el al., PAC-2001

Photo Stimulated Gas Desorption (PSD)

10²³ ph/m (10³ mA h @ 5GeV ERL) $\rightarrow \eta \sim 10^{-5}$ for CO, CO₂ is expected

Vacuum Pump Configuration – KEK ERL (2001 version)

Q-SX-Duct+NEG

1-D model estimation of vacuum level

5GeV, 100mA, synchrotron radiation in a bending duct only. thermal desorption Q_{th} =6x10⁻⁴ Pa I/s/m²

Vacuum level estimation by 1-D model

15

scraper = beam loss localization

localization of beam loss is helpful to protect X-ray beam lines from radiation background

If we allow 10⁻⁷ loss at specific 20 locations through an ERL loop, each location has beam loss of 2.5W (0.5nA x 5GeV).

R. Hajima, FLS-2006, May 18, 2006 DESY

When half aperture > 6mm

beam loss occurs mainly by Bremssttrahlung

 ϕ 20mm scraper at η_{max} =0.3m can collects the main part of beam loss.

scraper = beam loss localization (cont'd)

half aperture < 6mm \longrightarrow beam loss occurs inside this small duct.

note that undulator ducts may have such a small aperture.

Vacuum and Aperture Needs for ERL-LS

conservative design

- aperture > 5mm \rightarrow 10⁻⁷ Pa vacuum for 10⁻¹⁰ loss / turn
- high-flux X-ray = large amount of gas desorption
- vacuum system of ERL-LS will be similar to storage rings
- distributed pumps in bending (and Q) chambers are essential

progressive design

- putting scrapers at appropriate locations
- beam loss of a few watt at each scraper \rightarrow 10⁻⁷ loss / turn
- vacuum level of 10⁻⁴ Pa for 4mm aperture
- keep good vacuum at undulators, ~10⁻⁷ Pa, in any case
- pay attention to ion effects