

Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H.

HOM Damped Cavities for High Brilliance Synchrotron Light Sources

Ernst Weihreter / BESSY

High brilliance: use undulators implemented in a low emittance lattice

Minimize $\epsilon \sim \gamma^2 \theta^3 < H >$

- small $\theta \rightarrow$ many lattice cells
- small <H> \rightarrow many magnets per cell

Low emittance is an expensive ingredient !

► Avoid emittance degradation

Narrow band impedance of the cavities excite coupled bunch oscillations if Fourier components of $I_{\rm b}$ coincide with HOMs

- Emittance increase due to transverse oscillations
- Large energy spread ∆E/E due to longitudinal oscillations
- Potential beam current limitations by large amplitude oscillations

photon energy [eV]

- Detuning of the dominant HOM
 - by changing cavity temperature
 - by a second tuner
- Higher harmonic rf system for Landau damping
- Lower harmonic rf system and/or rf quadrupoles for decoupling of synchrotron and/or betatron frequencies
- Use selective damping antenna for individual HOMs
- Use broad band feedback systems

All these methods have their specific limitation

Damp all HOMs in the cavities in a broadband way

Concepts for HOM Damped Cavities

- Minimize number of cells N_c
- ♦ Minimize R/Q₀
- ♦ Minimize Q_{evt}

HOM-damping by ferrites

inherently low R/Q

Superconducting Cavities

SOLEIL Cavity

ESSY

CESR-B Cavity

- ♦ Nb sputtered on Cu
- ◆ 4 coaxial loop type HOM couplers
- 2 coaxial input couplers 200 kW each
- cooling capacity: 100 W at 4.5 K, 20 l/h LHe

- Nb sheet material
- ♦ 2 cylindrical HOM loads
- rectangular waveguide input coupler, 500 kW
- cooling capavity: 100 W at 4.2 K

Cavity used at

CLS/Canada NSRRC/Taiwan SLS/China DIAMOND/England

Room Temperature Cavities

Daphne cavity, 368.26 MHz, 250 kV, 2 M Ω

KEK ARES cavity, 509 MHz, 500 kV, 1.7 $\text{M}\Omega$

ATF cavity, 714 MHz, 250 kV, 1.8 $M\Omega$

PEP-II cavity, 476 MHz, 850 kV, 3.7 $M\Omega$

Room Temperature Cavities, cont.

PEP-II RF cavity raft assembly

PEP II Cavity:

- ◆ 3 rectangular HOM waveguides, 10 kW each
- thermal design for 150 kW
- complex mechanical design
- circular Al_2O_3 rf window for 500 kW

Cavities developed at BINP / Novosibirsk

VEPP-2000 cavity

172.1 MHz, 120 kV, 0.23 $M\Omega$

Cavity for the DUKE-FELL

178.5 MHz, 730 kV, 3.46 $M\Omega$

BESSY

Superconducting vs Normal Conducting Cavities

SC cavities:

NC cavities:

- high rf voltage per cavity
- lower electic power cost for higher energy rings
- need for cryogenic system
- high complexity
- ♦ MTBF:

7 days/cavity @NSRRC 23 days/cavity @CERN/LEP

- HOM impedance per cell competitive with sc cavities
- cost efficient and simple technology
- ♦ MTBF: 28 days/cavity @BESSY II

<i>Table 1.</i> Performance parameters of several cavities ($R_s = V_{cy}^2/2P_{cy}$, L insertion length)										
	\mathbf{f}_0	V_{cy}	R_s/Q	Q_0	P_{cy}	L	f _{HOM}	RII	$f_{HOM}\bot$	R⊥
	MHz	MV	Ω		kW	m	MHz	kΩ	MHz	kΩ/m
CESR	500.	2.5	44.5	-	-	2.9	2253.	0.18	715.	32.
SOLEIL	352.	2.5	45.	-	-	3.65	699.	2.1	504.	49.
		V_{cy}	R_s							
		kV	MΩ							
PEP II	476.	850.	3.8	32400	103.	~1.5	1295.	1.83	1420.	144.
DAPHNE	368.2	250.	2.	33000	16.	1.9	863.	259.	-	-
ARES	509.	500.	1.75	118000	72.	~1.1	696.	1.35	989.	10.
VEPP2000	172.1	120.	0.23	8200	29.	0.95	2460	0.4		<10.
DUKE-2	178.5	730	3.46	39000	77	3.16	-	-	-	-
BESSY	500.	780.	3.1	26700	100.	0.5	670.	1.6	1072.	54.

Longitudinal impedance spectra as calculated for the BESSY(CS), PEP-II and CESR cavity

BESSY HOM Damped Cavity

Simulation Models

Today: ~ 2 days cpu time

Impedance Spectra and Critical Impedances

Longitudinal Impedance

$$Z_{\parallel}^{hresh} = \frac{1}{N_C} \cdot \frac{1}{f_{\parallel,HOM}} \cdot \frac{2 \cdot E_0 \cdot Q_s}{I_b \alpha \tau_s}$$

Transverse Impedance

First Beam Tests in DELTA

CBM beam spectra: (longitudinal case)

$$f_{\mu m}^{\pm} = n f_{rf} \pm (\mu f_0 + m f_s)$$

Prototype cavity installed in the DELTA ring

No cavity driven CBMs excited in DELTA

BESSY

Homogenous Wave Guide Dampers

- HOM damped cavities are mandatory for state of the art high brilliance storage ring sources
- Several sc and nc HOM damped cavites are in use, which have been designed for collider rings, e.g. CESR cavity, SOLEIL cavity, PEPII cavity
- SC cavities have benefits for SR sources at higher energies

high rf voltage per cell low power consumtion

 Optimized nc cavities with reasonably high fundamental mode shunt impedance and a short insertion length are coming into operation in SR sources, e.g. PEPII and BESSY cavity, offering

high reliability moderate investment costs

 HOM impedances can be reduced down to a level which allows that most synchrotron light sources can operate below threshold for multi-bunch instabilities