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Outline and Scope

• Scope of this talk 
• Motivation 
• Touschek lifetime – new regime
• IBS – results and questions
• Impedance budget (ID chambers)
• The rest & status review
• Summary and conclusions

Parameter Goals for NSLS-II
I = 500 mA ( 0.5 mA/bunch )

εx = 0.5-1 nm
εy= 1 Angstrom/4π

δΕ/Ε = 0.1 %
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Become harder with higher brightness

Known solutions
• Topoff injection (lifetime => radiation) 
• Harmonic RF 
• Z(ω) minimization (HOM-damped RF, BB minimization,…)
• Multi-bunch feedback systems 

Challenges
• need | Z/n| < 0.5 Ω for MW threshold in  multi-bunch
• TMCI due to resistive wall from small gap IDs

Become harder with higher brightness

Known solutions NSLS-II
• Topoff injection (lifetime => radiation) √
• Harmonic RF √
• Z(ω) minimization (HOM-damped RF, BB minimization,…)√
• Multi-bunch feedback systems √

Challenges
• need | Z/n| < 0.5 Ω for MW threshold in  multi-bunch
• TMCI due to resistive wall from small gap IDs

Lifetime & Collective Effects

Lower lifetime & 
instability thresholds

Baseline for NSLS-II:      
1.5 GHz SC harmonic cav.

Single bunch instabilities  become most challenging esp. at medium energy

small bunch in all 6D
high current
many small gap IDs 
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Lifetime Limiting Mechanisms
• Quantum – not a problem
• Gas – Elastic

Vertical acceptance due to MGUs (gap = 2b = 5mm, L = 5m) is A ~ 1 μm-rad

• Gas – Bremsstrahlung
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Gas contributions to lifetime are small 
It’s now all about Touschek
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Touschek Lifetime Basics

• For flat and transversely non-relativistic beams (works well for NSLS-II)

• Decay is non-exponential, but is assumed linear for frequent topoff

• Energy spread dependence (through dispersion) is typically weak

• Touschek is peak current effect, i.e. τtous_1/2 ~ σz/Nb
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likely lattice limited
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Touschek Scaling with Emittance –New Regime

( ) ( )
2 2
e b e b x
3 2 4

tous _1/ 2 x acc acc

r c N C r c N1 D
V V

π ζ ′π σ
= = ζ

′τ γ σ ε γ ε [ ]
2

2 acc x
acc x 2

x

/ ε β′ζ = ε γσ ≈
γ ε

Roughly εx independent, for fixed  εy

For εx~1-nm @ 3 GeV Touschek lifetime reaches minimum, and should
grow at lower εx.  Experimental confirmation, anybody?
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τtous=4 hours @ εx=1. 4nm

τtous=4 hours @ εx=0.5nm

βx=7.2m, εacc = 3%

ζ=0.13 @ εx=1. 4 nm
ζ=0.38 @ εx=0.5 nm

Ignores dispersion

Similar to Le Duff
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Touschek Lifetime vs. Acceptance and Total 
Lifetime

tous_1/2 4 hours @ 3% RF acc.≈τ

• Most calcs. for bare lattice w/o 
apertures. Effect of IDs included 
“by hand” in ZAP

• ZAP, SAD & MAD results agree
• Work in progress to consider other 

effects,  i.e. lattice nonlinearities, 
α2, effects of IDs, errors & coupling 
correction, bunch lengthening, etc. 

• Lattice-dependent momentum 
aperture being done by 6D tracking 
(Elegant  and TRACY2)

4
acctous_1/2 const≈ × ετ

1 1 1
total gas brem tous_1/21/( ) 3hours− − −τ = τ +τ +τ ≈
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3 GeV, IBS OFF
3 GeV, IBS ON
3.5 GeV, IBS OFF
3.5 GeV, IBS ON

* ρbend=30.6 m DBA
* I=0.5 A / 80% fill
* 500 MHz RF, 3 % height
* εy =1Angstrom/4π (before IBS)

ZAP Calculations for I=500 mA • εx, δE/E, τrad, 
scaled “by hand”
for radiation loss

• Bare lattice case 
agrees with SAD 
and Bane’s apprx.

• Emittance blow-up:     
< 50% @ 3 GeV,      
< 15% @ 3.5 GeV

• Smaller εx offset 
by shorter τrad

• Will re-run with 3D 
code SAD with IDs 
and vertical η

Multiple Intra-Beam Scattering (IBS)
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3.5 GeV, IBS OFF
3.5 GeV, IBS ON

* ρbend=30.6 m DBA
* I=0.5 A / 80% fill
* 500 MHz RF, 3 % height
* εy =1Angstrom/4π (before IBS)

ZAP Calculations for I=500 mA • εx, δE/E, τrad, 
scaled “by hand”
for radiation loss

• Bare lattice case 
agrees with SAD 
and Bane’s apprx.

• Emittance blow-up:     
< 50% @ 3 GeV,      
< 15% @ 3.5 GeV

• Smaller εx offset 
by shorter τrad

• Will re-run with 3D 
code SAD with IDs 
and vertical η

Bare lattice 60 m DW

Multiple Intra-Beam Scattering (IBS)

Damping Wiggler (DW) @ 1.8 T
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IBS with Bunch Lengthening

0 5 10 15
0.2

0.3

0.4

0.5

rms bunch length, mm

X
-e

m
itt

an
ce

, n
m

 

IBS OFF
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Bare lattice

D. wiggler on

With HRF

• ZAP calcs shown 
@ 1.4 MV loss/Trn

• Harmonic RF 
(HRF) x2-3 in σz

• Ignore PWD
• IBS is small
• Will re-run with 3D 

code SAD with IDs 
and vertical η

With realistic bunch 
lengthening IBS effect is small 

for NSLS-II 
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NSLS-II Impedance Budget

Alexei Blednykh

GDFIDL Results
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NSLS-II Impedance Budget (Cont.)

Alexei Blednykh
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Geometric Impedance of Small Gap ID Chambers

Low Frequency Horizontal m=1 Impedance

Ellipse aspect ratio
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•NSLS-II will have ~20 small gap 
ID chambers of 5mm full gap
•Many LS reported lower TMCI 
threshold with  increased # of IDs
•Existing analytical solution 
(round x-section or very flat) 
don’t directly apply to NSLS-II
•Obtained analytical solution for 
Z
┴
(0) for gradual confocal tapers

•Confirmed by GDFIDL

Impedance of NSLS-II ID tapers is <10 kΩ/m, and is less than Res. Wall. 
Need to understand higher measured numbers from some other LS.

GDFIDL

Theory (Podobedov, Krinsky, PAC-05)
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• TMCI driven by small undulator gaps is a concern: 

• Threshold:

• NSLS-II undulators:
assume 100 m of Cu pipe 5 mm Ø

βy*=5 m, σz=3.3 mm, νs=0.005

• Also confirmed by simulations (MOSES, tracking) 
• This does not change significantly with harmonic RF
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At operating value of 0.5 mA/bunch, we are below TMCI threshold
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Other Issues Studied 

• RF cavity and resistive wall driven coupled bunch instabilities
• Damping of transverse couple bunch inst. with positive chromaticity
• Beam dynamics with harmonic RF
• TMCI particle tracking with harmonic RF included
• Micro-Wave instability (Tracking, Oide-Yokoya method, Fokker-Plank solver)

• Coherent synchrotron radiation instability
• Resistive heat of (SC) undulator chambers

None of these presently appear showstoppers for 
NSLS-II design
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Summary and Conclusions

• NSLS-II is optimized for nominal multi-bunch operation, and uses many 
known solutions to ease high current effects

• NSLS-II single bunch and high current goals appear to be achievable
• Touschek lifetime of a few hours is in the new regime, experimental 

confirmation would be welcome. Tracking (Elegant, TRACY2) in progress 
for momentum acceptance, loss distribution, etc. 

• (Multiple) IBS appears insignificant
• Transverse couple bunch instability may require feedback
• Impedance budget work is ongoing. Results will feed into Elegant and other 

codes, as well as will be re-evaluated analytically
• Would like collaboration with other facilities on understanding 

measurement results due to small gap ID chambers
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EXTRA
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Concluding Remarks

• Single bunch and average current goals appear to be achievable
• Transverse coupled bunch instability may require feedback
• We are facing a theoretical puzzle in regard to microwave instability

threshold, which we are working to resolve.  However, the threshold is 
above the 0.4ma required.

• At the moment we are estimating instability thresholds based on the
impedances observed at ESRF and APS.  

• We are calculating the NSLS-II impedance budget.  Once this is done, 
we will estimate the instability thresholds using the calculated
impedance.

• Realistic calculation of the Touschek lifetime is of critical importance.
Work on this problem is underway using both TRACY2 and ELEGANT.
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• TMCI and/or TMW instabilities are observed at 
many synchrotrons and may limit single bunch 
current

• Generally both the geometric (transitions) and                  
resistive wall wakes contribute

• For typical short, warm, MGUs the geometric wake 
exceeds the resistive wall                  

MGU-driven Transverse Single Bunch Instabilities

88
 m

m
 Ø

NSLS-II SCU taper

θ = 25 mrad

0.5 m
30 mm

NSLS-1 MGU taper

5 mm

3-10 mm

θ = 0.32 rad

Geometric wake will be made small with 
shallow taper and optimal transition design 

to minimize the geometric contribution to the 
impedance and avoid the TMCI instability
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Resistive Wall for Normal and Anomalous
Skin Effect Regimes

Normal Skin Effect:

Extreme Anomalous Skin Effect:
2/3

_ ( ) (1 3)s extremeZ A iω ω= −

_ 2( ) (1 )
conds normalZ iωμ

σω = −

with A=0.033 ps5/3 V/pC for Cu, independent of σcond (RRR)

l/δsk>> 1

l/δsk<< 1

We derived most resistive wall 
related quantities (short/long 
range wakes, loss/kick factors, 
instability thresholds, etc.)

• (Warm) Permanent Magnet MGUs (Cu @ 300 K)

Short range resistive wall wake

s/s0

W||a2

cryo
warm

(l - conducting e- mean free path
δsk - classical skin depth)

• (Cold) Superconducting SCUs (Cu @ 4.2 K)
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P/L ~ 28 W/m (warm Cu), or 140 W 
for 5 m undulator, easily handled

Resistive Wall Heating

*Ignore bunch lengthening, ignore chamber ellipticity, allow 
for Δ by a -> a – Δ, 4/5 RF buckets filled -> +25%

2
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5 / 34.2 10 av RF

z

IP
L a

λ
σ

−
= ×

average current Iav 500 mA
rms length σz 3.3 mm
RF wavelength λRF 60 cm
half ID gap a 2.5 mm
off-center error Δ 0.5 mm

2
5

3 / 25.6 10 av RF

z

IP
L a

λ
σ

−
= ×

• (Warm) Permanent Magnet MGUs (Cu @ 300 K)

• (Cold) Superconducting SCUs (Cu @ 4.2 K)

Conservative Estimate*: P/L ~ 5 W/m (cold Cu), or 25 W 
for 5 m undulator, exceeds off-the-shelf single cryo-
cooler capacities but could be handled by individual 
refrigerator. Harmonic RF may reduce this a factor of ~ 6.
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Synchrotron Radiation Heat Load on Undulator

• Undulator radiation has finite 
opening angle

• Small fraction hits the cold bore
• P ~ 40 W for 5 m undulator

K=2, λu=15 mm,
gap=5 mm, I=500 mA

Warm MGU – easily handled
Cold SCU - exceeds off-the-shelf single cryo-cooler 
capacities but could be handled by individual refrigerator.
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•Microwave λinst/σz<<1 
• Boussard criterion |Zn/n| <~0.1 Ω   <− low!
• Lower |Zn/n| are believed achievable (i.e. ILC DR)
• However, Boussard criterion is conservative 
• Harmonic RF (and PWD) increases the threshold ~σz

•Mode-Coupling λinst/σz > ~ 1 
• Scaling NSLS ring Z(ω) gives Itotal > 1 A
• Scaling is very simplistic                                      

=>Z(ω) budget is needed
• Harmonic RF increases the              

threshold but slower than ~σz

                         

Longitudinal Single Bunch Instabilities

Re(Zn/n)

Im(Zn/n)

-0.2 0.2

-0.2

R-Vstable

Boussard

Tight impedance control will be required

• Self-stabilize through increase in δE/E
• Not significantly driven by MGUs
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N. Towne

Passive Third-harmonic Landau Cavity (1.5 GHz)

Use of a bunch lengthening Landau cavity can increase Touschek lifetime, 
raise microwave instability threshold and decrease intrabeam scattering.
Initial estimates indicate we can increase bunch length by factor of ~2.5
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NSLS-II 0.5 m (θ=25 mrad) MGU 
tapers result in sufficiently low 
impedance to avoid MW and 
TMCI instabilities
|ZII/n|=0.2 mΩ Z

┴
=1 kΩ/m

Estimates confirmed by simulation

Geometric Impedance of
Axially Symmetric Tapers

Yokoya ABCI @ fine mesh

Also considered elliptical chambers
Zy grows factor of ~6 but still low enough for TMCI

• At low frequency shallow taper 
impedance is imaginary and small

Z(ω) ~ i θ, ( σz>>a θ )

• Analytical expressions exist for 
impedance in this (Yokoya) regime
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New Results (Convex Structure)

•GDFIDL & 1st order PT agree 
well for  weakly elliptical case Zy

•Perfect agreement for Zx

•Zy growth saturates for very flat 
tapers at ~10*Yokoya

•Zx is Yokoya/2 for flat tapers

First order PT Zx,y and New GDFIDL Results

Zx

Zy

<= Not for Zx

<= wrong

•PAC-05 Conjecture: PT clearly breaks down for flat structures

Example: Zx should be 0 (not 0.5 ) for a flat structure

•To confirm needed to extend the PT to higher orders
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