Discussion of NSLS-II Design

S. Krinsky

ICFA FLS Workshop

Hamburg, Germany

May 15-19, 2006

Acknowledgements

Johan Bengtsson, Joanne Beebe-Wang, Alexei Blednykh, Richard Heese, Stephen Kramer, Yun Luo, Nikolay Malitsky, Christoph Montag, Boris Podobedov, Igor Pinayev, George Rakowsky, James Rose, Satoshi Ozaki, Todd Satogata, Timur Shaftan, Sushil Sharma, John Skaritka, Toshiya Tanabe, Dejan Trbojevic, Dong Wang, Fuhua Wang, Li Hua Yu

NSLS-II Concept

NSLS II Machine Concept

New Electron Storage Ring
Medium Energy (3 GeV)
Large Current (500 mA)
Top-Off Operation
Circumference (800-900 m)
Ultra Low Emittance (<1 nm)
Damping Wigglers
Superconducting RF
Provision for IR Source

NSLS – II Site

NSLS-II Parameters

Energy	3.0 GeV	Energy Spread	<0.1%
Circumference	800-900 m	RF Frequency	500 MHz
Number of Periods	30/32DBA	RF Bucket Height	3%
Length Long Straights	~5 & 8m	Synchrotron Tune	~0.009
H-Emittance (h,v)	1.0-0.5nm	RMS Bunch Length	~15ps
V-Emittance	0.007nm	Average Current	500ma
Momentum Compaction	n ~.00035	Current per Bunch	~0.5ma
Dipole Bend Radius	20-30m	Charge per Bunch	~1.3nC
Energy Loss per Turn	<2MeV		

Insertion Devices

Damping Wigglers ↔ λ_w =100 mm, B_w=1.8T ↔ Total Length ~50m

<u>Cryo-PM In-Vacuum Undulators</u> ↓ Longer period, λ_u =19 mm, g>5 mm, L=3 m

Superconducting Undulators (R&D) $rightarrow K = 2.2, \lambda_u = 14 \text{ mm } \& g = 5 \text{ mm}, L = 2 \text{ m}$

SC Wigglers

★ Two devices anticipated for h■ > 20 KeV
★ B_w=3.5T

ID Focusing Effects

$$\Delta v_{y} = \frac{\beta_{y} L_{w}}{8\pi \rho_{w}^{2}}$$

Linear Tune Shift

$$\frac{dv_{y}}{dJ} = \frac{\pi \beta_{y}^{2} L_{w}}{4 \lambda_{w}^{2} \rho_{w}^{2}}$$

Tune Shift with Amplitude

Require small vertical betafunction in insertion devices

For small gap undulators, small vertical beta also needed to reduce effect of transverse impedance

7

Betatron Functions

Damping Wigglers

9

$$\frac{\varepsilon_{w}}{\varepsilon_{0}} = \frac{1+f}{1+\frac{L_{w}}{4\pi\rho_{0}}\left(\frac{\rho_{0}}{\rho_{w}}\right)^{2}}$$

$$f \cong \frac{2C_q \gamma^2}{3\pi^2 \varepsilon_0} \frac{L_w \rho_0}{\rho_w^3} \left[\frac{K_w^2}{5\gamma^2} \langle \beta_x \rangle + \frac{\eta_0^2}{\beta_{x0}} + \beta_{x0} \eta_1^2 \right]$$

$$\beta_{x}(s) = \beta_{x0} + \frac{s^{2}}{\beta_{x0}}$$
 $\eta(s) = \eta_{w}(s) + \eta_{0} + \eta_{1}s$

$$\frac{\delta_{w}}{\delta_{0}} = \sqrt{\frac{1 + \frac{L_{w}}{2\pi\rho_{0}} \frac{4}{3\pi} \left(\frac{\rho_{0}}{\rho_{w}}\right)^{3}}{1 + \frac{L_{w}}{4\pi\rho_{0}} \left(\frac{\rho_{0}}{\rho_{w}}\right)^{2}}}$$

$$\eta_w(s) = \frac{1}{\rho_w} \left(\frac{\lambda_w}{2\pi}\right)^2 \left(1 - \cos\frac{2\pi s}{\lambda_w}\right)$$

$$\frac{K_w}{\gamma} = \frac{\lambda_w}{2\pi\rho_w}$$

$$C_q = 3.84 \times 10^{-13} m$$

Example:

 $\rho_0 = 30.6 m$ $\varepsilon_{x0} = 1.7 nm$ $\delta_0 = 0.046\%$ $U_0 = 235 KeV$

Dispersion in Straights (perhaps a reasonable tolerance):

 $\eta_0 = 1 cm$ $\eta_1 = 0.002 rad$

Intrabeam Scattering

11

Baseline: 4 CESR-B Cavities

SCRF chosen for lower R/Q, highly damped HOM's, lower operating cost and comparable capital cost

Energy loss/turn	2 MeV
Cavity Voltage	4.9 MV
Power to Beam	1 MW

Frequency	500 MHz
Beam energy gain/cav	>2.4 MV
Eacc	>8 MV/m
Unloaded Q	>7.108
Standby (static) losses	<30 W
Dynamic + static losses	<120W
Operating Temperature	4.5 K
Max. beam power/cavity	<250 kW

Harmonic Cavity

6

4

2

0

-4

-6

Mega Volts

1500MHz "Bessy" cavity		
Voltage/cavity	0.5 MV	
Eacc	>5MV/m	
Unloaded Q	$>7.10^{8}$	
Static losses	<6W	
Dynamic + static losses	<12W	
Operating T.	4.5 K	
Frequency	1500 MHz	

4.9MV @500MHz required for 3% Momentum acceptance: 1.6MV @ 1500MHz requires 3 cavities

Touschek Scaling with Emittance

