Center for the Advancement of Natural Discoveries using Light Emission

Beam Physics Issues in CANDLE Project

M. Ivanian, Yu. Martirosyan, V.Tsakanov CANDLE, Yerevan, Armenia

ICFA FLS,15-19 May,2006, DESY,Hamburg

Pre-History

A.I. Alikhanian

Construction of 6 GeV synchrotron (1967) A.I. Alikhanov

01 Ihe #2002

01 Mxo 2002

Review Panel, NSF, 14-15 Aug 2002

3 GeV CANDLE Light Source

Energy	3 GeV		
Current	350 mA		
Circumference	216 m		
Frequency 4	99.65 MHz		
Harm. Number	360		
Periods No	16		
Straight section	4.8m		
Lattice type	DBA		
Emittance	8.4 nm		
Beam lifetime	18.4 hours		

Time structure

Storage Ring – Figure of Merit

 $\mathbf{B} = \frac{\mathbf{N}_{\mathrm{ph}}}{4\pi^2 \varepsilon_{\mathrm{px}} \varepsilon_{\mathrm{py}}}$

Point source

Brightness

$$\varepsilon_{\rm p} = \sqrt{\left(\varepsilon\beta + \sigma_{\rm r}^2\right)\left(\varepsilon/\beta + \sigma_{\rm r'}^2\right)}$$

Optimal beta for diffraction limited case

$$\beta_{\rm opt} = {\rm L}_{\rm und} / 2\pi$$

$$\varepsilon_x = 8.4 \text{ nm} \cdot \text{rad}$$

 $L_{und} = 4 \text{m}$

Real Beam

- Oscillating e-beam trajectory

H. Wiedemann, SSR, 2000.

- Beam size variation along undulator

 $\varepsilon_{\rm ph}^2 = \varepsilon_{\rm u}^2 \left(1 + {\rm L}^2 / {\rm 12}\beta_{\rm u}^2 \right) + \varepsilon_{\rm u} \sigma_{\rm r'}^2 \beta_{\rm u} + \varepsilon_{\rm u} \sigma_{\rm r'}^2 {\rm p}_{\rm u} / \beta_{\rm u} + {\rm d}_{\rm u}^2 \sigma_{\rm r'}^2$

Storage Ring- Optics

High Brightness & Stable Beams

Wiggler type I

Magnetic field (T)	1.98				
Period length (cm)	17				
Critical ph. energy (keV)	11.97				
Undulator					
Magnetic field (T)	0.3				
Period Length (cm)	5				
Photon energy n=1,3,5 (keV)	0.85/ 2.6 /4.3				

Dynamical Aperture

Horizontal

Vertical

Fringe Field Effects

Yu. Martirosyan, NIM(A)-2004

Tunes re-adjustement

Vwrudjh#Ulgj# Irq#Wudslgj

Non-stable ions

Stable ion mass	Residual gas species	
-	2, H ₂	
-	16, CH ₄	
17	-	
-	28, N ₂ , CO	
32	-	
33	-	
37	-	
42	-	
-	44, CO ₂	
48	-	

Trapped ions

Ring impedance

Longit. Impedance - 0.314 Ω

Trans. Impedance - 12.5 k\Omega/m

Impedance of Laminated Vacuum Chamber

Stainless- steel- Copper (reduce imped.) Copper – NEG (high vacuum) Ceramic –metal (static charge)

Exact analytical solutions for long. and trans. impedances

$$\overline{Z}_{zm}(\mathbf{r},\omega) = -\left(\frac{\mathbf{r}}{\mathbf{a}_2}\right)^m \left(\frac{\mathbf{a}_1}{\mathbf{a}_2}\right)^m \frac{\mathbf{j}Z_0}{\pi \mathbf{k} \mathbf{U}_m(\mathbf{k})}$$

M. Ivanian et al, Phys. Rev STAB-2004 M. Ivanian et al, Phys. Rev STAB-2006

Storage Ring – Instabilities

Beam Lifetime

Touschek Lifetime

Coupling	1%
Gap Voltage	3.3 MV
Energy Accept.	2.4%
Vacuum	1 nTorr

- Elastic scattering 91.4
- Inelas. Scattering 55.4
- Tousch. Lifetime 39.5
- Quant. Lifetime 436;

Total - 18.4 hours

Effects from insertion devices

Touschek lifetime

Beta beating

ID's	Wig.I	Undul
$\Delta U/U_0,\%$	9	0.21
$\Delta \sigma_{\rm E}^{}/\sigma_{\rm E}^{0}, \%$	0.16	-0.11
$\Delta \varepsilon_{\rm x}/\varepsilon_{\rm x}, \%$	0.56	-0.13

ID's	Wig.I	Undul
ΔQ _y	0.063	0.0015
$\Delta \beta_{y} / \beta_{y} \%$	39.6	0.92
$\Delta Q_y^{oct} (10^{-8})$	3.73	1.0

Booster

Dipole ramping rate and energy gain

Emittance vs energy

Dynamic aperture

16° of 3GHz

Energy100 MeVCurrent1- 20 mAPulse length2-600 nsecFrequency3 GHzEnergy Spread< 1%</td>Emittance< 1 mm-mrad</td>

Welcome to ARW06

- Light Sources and New Projects
- Instrument. and Exper. Technique
- Application in Life and Material Sciences
- Social and Economical Impacts