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Sources of jitter
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Multi-Knob tuning
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Parameters can be adjusted
to redistribute jitter to
minimize specific
observables such as arrival
time jitter. Timing
correction will become
analogous to orbit
correction.
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LCLS longitudinal feedback system schematic

o
B
v,
—{ 11 Hx]
DL1 BC1 BC2

'l BLM
E Observables (6): L

¥ Energy: E, (at DL1), E, (at BC1), E, (at BC2), E; (at DL2)
B Coherent Radiation power % bunch length: 6, (at BC1), 5,,
(at BC2)

E Controllables (6):
B Voltage: V, (in LO), V, (in L1), V, (effectively, in L2)

E Phase: @, (inL1), @, (inL2), @, (in L3)
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Synchronicity

Next generation light sources require an unprecedented level of remote
synchronization between x-rays, lasers, and RF accelerators to allow pump-
probe experiments of fsec dynamics.

— Photocathode laser to gun RF
— FEL seed laser to user laser
— Relative klystron phase

— Electro-optic diagnostic laser to user laser

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
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Layout of laser based synchronisation
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Injection locking of DRO

*Pulse train is directly fed to VCO input
of DRO

*Unity gain is determined by amplitude of
pulse train
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*Resonant circuit: phase=n*360 deg

*DRO reacts to phase shift by changing center frequency

*[f locked: pulses will be at zero-crossing of 1.3 GHz
wave

*High bandwidth of photodiode can be fully used



Time domain status

* Present state:

— Engineering and design effort on first generation master laser oscillator system for the
VUV-FEL

e Things accomplished:
— Lock of Laser to RF source
— Switching concept to combine redundant MLO’s
— First tests with FPGA-based regulation
— First tests with injection locking external DRO to MLO

e Things to be done:

— Evaluate performance of FPGA-based regulation and include second feedback and
exception handling

— Implement suitable set of diagnostics for MLO’s to assure reliable operation of system
— Long-term tests of system
— Evaluation of injection locking performance



Frequency domain approach
Frequency-offset Optical Interferometry

Technique used at ALMA Principle: Heterodyning preserves phase relationships

64 dish 25 k 1 degree at optical = 1 degree RF
ke " 1 degree at 110 MHz = 0.014 fsec at optical

footprint, 37 fsec requirement  Gain 10 leverage over RF-based systems in phase sensitivity

Fiber Frequency
DFB Laser Piezo Phase Shifter 100 meter fiber Shifter
Faraday

_-'vq—»@qm FFS -—P thator
Mirror
Piezo
55 MHz .
A Driver A FFS Driver

LLRF Divide

by 2
Control 110 MHz Yy

Oscillator
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Amplifier 110 MHz 110 MHz
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Synching mode-locked lasers
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Shelton et al, O.L. 27, 312 (2002) work (5THz)
Bartels et al, O.L. 28, 663 (2003)



Two-frequency synch scheme

e Vim V2, Lock two frequencies
clock within the frequency
| | comb separated by 5
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FD Status

» Stabilized link

— achieved drift of 0.13 fsec/hour and wideband jitter (55
MHz) of 0.2 fsec rms. Jitter within stabilization bandwidth
at attosecond level.

— dual link ready for ready for RF transmission expt
— Setup being prepared for test in SLAC tunnel/KG
— Radiation hardness study in progress
— FPGA-based feedback developed

* Synchronizing lasers
— achieved 150 fsec rms lock over 1 hour at 2 GHz

— present studies aimed at locking under 100 fsec over 24
hours

— optical beat lock still under development

ICFA FLS, May 15-19
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Time and Frequency domain comparison

MIT timing, time domain LBNL, frequency domain

PRO CON PRO CON
Group delay Power limit High temporal | Needs group
compensation <30mW resolution delay

compensation

Transmission of | Output pulse Direct optical | Needs mode
fundamental & shape limited | synchronizati | locked receiver
harmonics on at STHz laser

carrier
Possible direct GVD, SPM, No non-linear | Brillouin
seeding of remote | SRS effects scattering
optical amplifier <100mW >100mW

Mario Ferianis
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MI approach
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Timing Measurements

« Measure bunch arrival timing and/or bunch shape
information

— CTR spectrum over infrared spectrum (H. Delsim-
Hashemi)

— Deflecting cavity (M. Roehrs)

— BTM- Beam timing monitor (F. Loehl)

— Electro-optic sampling (A. Cavalieri, B. Steffen)
— Optical replicants (V. Ziemann)

— New ideas-Kerr effect (P. Krejcik)
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CTR Spectrum
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Principle of the Beam Phase Monitor

laser pulses n A A n n
from fiber link

[Ty

ADC

sampling time of ADC

The timing information of the
electron bunch is transferred into v ¥ ¥ 4
an amplitude modulation. This
modulation is measured with a W l W l A l W j W
photo detector and sampled by a Jd v 8 |
fast ADC. 40.5 MHz
(54 MHz)
Florian Lahl FLS 2006, May 16th, 2006 7%/



First Results:

Calibration and Resolution of the System

The resolution can be estimated
from the slope of the phase
monitor signal and the amplitude
noise of the unmodulated laser
pulses:
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Measurements with LOLA:

Longitudinal density profile
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EO Sampling

EOS data from SPPS A. Cavalieri Timing Jitter Data
(20 Successive Shots)

Single-Shot
w/ high frequency filtering
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Laser tagging beams

FIE TUndulsteor VI Ondulator Dff-axis Lazer
sCreen Fadiator Modulator

{_\ -
xz’f,’ " ™
Chicane for
Grencuille ORS and tagging

* Measure the longitudinal bunch profile of the femto-
second long electron bunches (Saldin, Schneidmiller,
Yurkov: NIM A 539 (2005) 499))

* Energy modulation via (v.E) coupling
* Longitudinal density modulation in chicane

* (Cause coherent emission of light pulse 1n radiator that
mimics the longitudinal shape of the electron bunch
(optical replica).

ICFA FLS, May 15-19
2006
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SMOKE Pump Probe Geometry

spatrally converted profile
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thin film
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B x-ray temporal profile Z

Plane polarized
probe laser pulse
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Small things

100 femtoseconds

= 100x10-15 sec

= 30 microns

= 0.8 mradwl1.3 GHz

= 0.045 degw1.3 GHz
= 1.8 mrad@2856 MHz
= 0.1 degw2856 MHz
= (10 TeraHertz) !

= 20*(1.5 micron)

~3dham.com
‘Fungus gnat

ICFA FLS, May 15-19
2006



/O jottra 2'0 24 GeV
[+ Light Source

Let me here remind you that ELETTRA will host
DIPAC in May 2007

the European workshop on
Diagnostics and Instrumentation for Particle Accelerator:

you are all kindly invited!!!



Summary WG 5
Part 2

Transverse Phasespace
&
Protection Systems

ICFA FLS, May 15-19
2006



Orbit Feedbacks

e Essential and well established Tools in 3
Generation SR Facilities

 But, also SASE FELs

— Will use them
— Pulse to Pulse Basis (LCLS)
— Pulse to Pulse and Intrabunch (FLASH, XFEL)

* Get to more accurate and faster and Systems

ICFA FLS, May 15-19
2006



PETRA

~ (schematic)

Rate of orbit measurements: 24 kHz

Data flow on cables (fiber optics) manageable
Digital controller (SVD & PID) feasible

Power supplies: work in progress

Correctors: air coils similar to ESRF

Gajendra Sahoo, DESY

EEEEEEE

Remember,
No much symmetry in
This Machine



BPM3+4:
+30 m ~ +211 ns

Cable with v=0.9c¢:
dL(BPMI1...Kicker2) +30 m:

+11 ns more latency (dT_cable®
(dT_cable®dT_beam) dT_beam

"downstream BPMs"
Kicker 1  Kicker 2 BPM3 M4

IBFB j T

. |«
» Electronics |«

IBFB Topology

"upstream BPMs"
BPM1

Beam

- Use beam positions at upstream BPMs of bunch
no. N, N-1, N-2, N-3,... to calculate kicks for bunch
no. N+1 using a model (200 ns bunch spacing)

- Use downstream BPMs to check & correct model (less fast)

- Why upstream (not downstream) BPMs for fast feedback loop ?
+ Less latency (beam and cable signals travel in parallel)
+ -> Larger distance between BPMs -> better angle resol.
 BPM1+2 see unkicked beam: IBFB puts less noise onto the beam

B: Keil, PSI




— ([==1 J== pauL scHERRER INsTITUT

Digital IBFB Hardware Concept

 Bunch Clock
 Gun Enable/

BPM1 BPM2 Kickerl| |Kicker2 ,
| | I I I I BUHChTI"Gln
RFFE RFFE Amp.l| [Amp2|  Prefrigger
X JALE AL N
8 2: [apc][apc] [Abc [Abc| [DAC] [DAc] |Llocksé
>3 i | Trigger &
S0 Delays
BN -1 7 O o2 I
O “"Feedback FPGA"” | |Highspeed Trigger &
& g DSP 1 (Virtex 4 FX) RAM Sync.
Jalo i (TS201) 1
w S Rocket IO :
= DSP 2 . » o Gioab
> g (TS201) System FPGA Compact ArAHErG o
: : Fiber Optic | :
O (Virtex 4 FX) Flash pTic |
: 256 MB I Transceivers
v - SDRAM VME Transceivers 5
so Ty | l
%‘ ;2’ RFFE | [Kick. Amp VMEbus Other Identical Boards
S Control| | Control (Control System) (Downstream BPM3+4, ..),
I I LL-RF, XBPMs, ...

RFFE Gain, Kicker Status, ...

.

Boris Keill FLS2006



Special Requirements for SASE
Machines

* Precise Energy Measurements in the Bunch
Compressors
— Wide Beampipes
— Beam Size of several mm

— Resolution Requirements to resolve ,,Center of Charge*
of 10 um

— Although ,,Center of Charge* might not be that relevant
for Lasing

e Orbit Control in the FEL Undulator

— Single Bunch Resolution with um or sum um Resolution



MW Studio
Simulation

Coaxial cable impedance matching model
Tapered to SMA connector to maximize bandwidth of output

K. Hacker



Test bench

1.3 GHz

("M

piezo
controller

piezo

DAC

‘m 1.3 GHz

trigger| clock —V( ?—{ % ’—
ADC

fiber
stretcher

Master
Laser
Oscillator

40.5 MHz

81 MHz 1.5 GHz
100 MHz
12 | 14 Bit SEET
pick-up
LMA 200 MHz 1.5 GHz
Ll EQOM (——

Setup developed by Florian Loehl

Use electro-optical modulators

and a timing laser to sample
RF pulses

Measurement is limited by:

- the electro-optical modulator’s
tolerance for high voltage

(attenuator or limiter must be
used)

- slope of RF (BC BPM slope is
more than twice as steep as
beam phase monitor slope)

K. Hacker



Test bench

Use electro-optical modulators
and a timing laser to sample

@_ I @_ piezo piezo RF pulses

controller| ||fiber
DAC T stretcher

@There IS a clear trend to use
' Optical/Laser Methods for

tri . . ,
a Diagnostics tor's
:gﬂ,- :T;it beam (attenuator or Ii\r’niter mast be

pick-up used)

LMA 200 MHz 1.5 GH=z

LR Eom |— _ slope of RF (BC BPM slope is

more than twice as steep as
beam phase monitor slope)

Setup developed by Florian Loenhl
K. Hacker
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LTU and Undulator Planning

E Receiver and LO housed in
shielded enclosure below
girder 20 watt power
dissipation maximum

F Presently BPM output on
wall side

¥ BPM output flexible
waveguide section allows
movement for alignment

May 15-19, 2006 Patrick Krejcik

Hamburg, Germany pkr@slac.stanford.edu



k Stanford Linear Accelerator Center
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Stanford Synchrotron Radiation Laboratory

LTU and Undulator Planning

B Receiver and LO housed in

shlelded enclosure below - o
Cavity BPMs are getting standard in SASE Undulators

They can meet the high resolution requirements.
* Have the potential to go well below 1 um
 Alignment Problems are not easy, since one has

hit them close to the center
movement for alignment

May 15-19, 2006 Patrick Krejcik nesr
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Hamburg, Germany pkr@slac.stanford.edu



Protection Systems

» Both Ring Based and LINAC Based
Sources need Protections Systems

— Damage by uncontrolled Beam Loss
— Heat load of Synchrotron Radiation

e Time Scales

— Storage Rings: Slow: 100 uys ... ms
— LINAC:

* Two time scales:
— Rep Rate (slow)
— Intra Bunchtrain (fast), depending on cable length

ICFA FLS, May 15-19
2006



Emergency Scenario:
detect a failure and switch the beam production off as quickly as possible

Candidate for Collimator Material: Titanium Alloy
Rough stress analysis shows that to withstand a direct impact of such number of bunches

(~100) which can be delivered to collimator location until failure will be detected and

the beam production will be switched off, the beam spot size should be not smaller than
80-90 microns
(energy: 20GeV, normalized emittance: 1.4 mm-mrad, bunch charge: 1 nC,
bunch spacina: 200 ns).

Energy = 20 GeV. Charge=1nC. o . =20um, D= Oum, o =130 pm. Material: Ti.

'EG'S4 s'imuiatiolns

Energy =20GeV. Charge = | nC. Material: Tialloy. Slab thickness = 3 radiation lengths.
160 T T T T T T T T T 520

8
E

i
i

&
in

Number of bunches which can be delivered

¥
\ \
Safe betatron functions

(]
2]
corresponding beta function (m)

energy deposition density (J/g)
l\1
number of bunches below stress limit

Safe beam spot size

—————§

»

i L L L L
0.9 1.2 1.5 1.2 21 24 27 3 20 n 42 53 84 T8 83 a7 108 119 130
thickness / radiation length beamsigma (microns)

FLS 2006 Workshop, May 15-19, Hamburg x F E L

X-Ray Free-Electron Laser




Topology

Optical fibres

Total view

Optical
fibre

PETRA Il

dual
loop

Beam
current
monitor

DUMP

’4.

|

N\

SEDAC crate
with Control
System
Interface

SEDAC
module

M. Werner



7. % Fast beam interlock M

EEEEEEEEEE

LASER ACC1 RF
e 59308084
4 | | 4
BIC 1 BIC 2
TTTT FV VY V
I [ ) I
BIC3 ||BIC4]| |[BIC9 ||BIC10
N i < X ft__________7
BLM Alarm Gen. BLIVI Alarm Gen. Toroid Protection
éééé%%%% éééé%%%% SyStem TPS)
Beam loss monitors (BLMs) Toroids

Combination of fast, o
And more intelligent Slow System L. Frohlich



GEMEINSCHAFT

TTFMUV—FEL — PRESENT STATUS, V1.0

i (] | 4
TR UVAFEL- STATUS
Sun. 19 .Mar.2006 03:24:49
Charge/Bunch at Gun Total Transmission
0.92 nC 100 =
Bunches/Macrop. at Gun End-Energy/Electron
298 0.47 GeV
Macrop. Rep.-Rate Beam Power at Dump
5 Hz 0.64 kW

Prove of Principle of the Protection System of FLASH
There are still some 100 ys to go, and rep rates to increase, but
the protection system is prepared.

We have a prototype for the XFEL system.

ICFA FLS, May 15-19 2006

L. Frohlich



Concluding the Conclusion

* Very interesting WG

» Forefront Technologies everywhere
— Optical Systems come in, not only for Synchronization and
Timing
— Proposal for Optical BPM Readout
— Techniques to work on 100 fs time Scales evolve
— Sub-microns Resolution in Single Shot BPMs

* Solutions to cope with Challenges of Diagnostics
with X-RAY SASE Machines are close to our hands.
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