Design Considerations of *table-top* FELs

FLS 2006, May 15, 2006

LMU: <u>F. Grüner</u>, U. Schramm, S. Becker, R. Sousa, T. Eichner, **D. Habs** MPQ: S. Karsch, M. Geissler, L. Veisz, J. Meyer-ter-Vehn, **F. Krausz** UCLA: S. Reiche

- laser-plasma accelerators
- principal possibility of *table-top* FELs
- possible VUV and X-ray scenarios
- experimental status

Laser-Plasma accelerators: "bubble acceleration"

electron bunch: e.g. 170 MeV (LOA), rumor: 1.2 GeV (Berkeley)

Street and a sector of

The Restored Law Source is a set

Berthamp fortune (11) and terrain

nature

Dream beam

PIC code

Discharge capillary

year	laser pulse energy	Pulse length	electron energy	energy spread	divergence
2004	0.36 J	40 fs	86 MeV	2 %	3 mrad
2006*	1.3 J	33 fs	1.2 GeV	< 2%	?

to be presented at Anomalous Absorpt. Conf., June 6, 2006)

Discharge capillary

year	laser pulse energy	Pulse length	electron energy	energy spread	divergence
2004	0.36 J	40 fs	86 MeV	2 %	3 mrad
2006*	1.3 J	33 fs	1.2 GeV	< 2%	?

to be presented at Anomalous Absorpt. Conf., June 6, 2006)

MPQ: in few weeks 1-2 J, 37 fs, future: 5 J, 5 fs (=1 PW), 1 kHz

Improvement by capillaries

- discharge introduces parabolic electron density
- laser guiding beyond Rayleigh length \rightarrow higher energies
- de-phasing: reducing energy spread
- ion-channel: reducing electron beam diameter and divergence

Important feature: ultra-high current

Principal possibility for *table-top* FELs

simplest estimate: ideal 1d Pierce parameter (no energy spread, emittance, diffraction, time-dependence)

Constraints for *table-top* FELs

 not only table-top size, but sufficient output power:

$$P_{sat} \sim \left(\frac{1}{1+\Lambda}\right)^2 \cdot \left(I \cdot \lambda_u\right)^{4/3}$$

reduction in λ_u gives a reduction in γ , but <u>needs ultra-high current</u> for keeping ρ and also saturation power large enough

Start-to-End Simulations

Start-to-End Simulations

A possible first VUV case

Parameter	DESY (TTF2, fs-mode)	MPQ
Current	1.3 kA	160 kA
Norm. Emitt. (rms)	6 mm·mrad	1 mm·mrad
Energy	461.5 MeV	130 MeV
Energy spread	0.04 %	0.5 %
Wavelength	30 nm	25 nm
Pierce par.	0.0016	0.0117
Sat. Power	0.66 GW	5 GW
Sat. Length	19 m	45 cm

A possible first VUV case

International competition and a possible first table-top XFEL case

Parameter	Leemans (FEL2005 conf.) 100 TW, 33 fs	MPQ (TT-XFEL) 1 PW, 5 fs
Current	25 kA	160 kA
Norm. Emitt. (rms)	1 mm·mrad	1 mm·mrad
Energy	1 GeV	0.9 – 1.2 GeV
Energy spread	1 %	0.1 %
Und. Period	10 mm	1.5 – 3 mm
Wavelength	2 nm	0.25 nm
Und. length	4.7 m	3 m

International competition and a possible first table-top XFEL case

- hybrid undulator
- mini-quads
- laser systems
 - ➤ 100mJ 1 J; 10 50 fs; ~10 TW scale
 - LWS10 and ATLAS-upgrade
- time table:
 - in few weeks: first electrons with ATLAS
 - ➢ end of 2006: beam time at LOA
 - > 2007-2008: proof-of-principle of SASE
 - > 2008-2009: reaching 1 GeV, TT-XFEL

hybrid undulator

hybrid undulator

- hybrid undulator
- mini-quadrupoles:
 530 T/m
 laser:
 5 mm aperture

• time t ≻ in

▷ er

> 20

> 1(

 $\succ L$

Conclusion

- Iaser-plasma accelerators demonstrated generation of 100 MeV – 1 GeV electrons with energy spread in the range of few % and below, charges 0.1-1nC, normalized emittances ~ 1 π mm·mrad
- main feature: high currents, up to few 100 kA
- thus, short-period undulators are feasible for SASE
- hence, table-top FELs are possible
- to do list:
 - further development of laser and capillaries
 - build next-generation undulator: period 3 mm
 - \succ from SASE signatures to saturation; VUV \rightarrow X-rays