First Experimental Experience at FLASH

User Operation since August 2005

Photon energy 30-200 eV 10¹³ Photons/Pulse 10⁵ Pulses (< 100 fs) Peak power 1 GW

- FLASH performance
- User operation
- Some experimental results

W. Wurth Institut für Experimentalphysik Universität Hamburg

FLASH performance at 32 nm

Spatial profile Spectral distribution

FLASH performance at 32 nm

Spatial profile Spectral distribution

Spatial profile Spectral distribution

FLASH

ron LASer in

FLASH performance at 32 nm

Spectral distribution $2Hz/multi-bunch (\leq 30)$

max

Parameter	
Wavelength	
Pulse	duration
Pulse	energy

Bandwidth Divergence

UH

Expected (08.04) 30 nm 15-50 fs 50-150 μJ at saturation 0.8% 70-80 µrad

average single Measured 32 nm 20-40 fs up to 130 μ J (mostly 5-10 μ J) onset of nonlinear regime 0.5-1.0% < 150 µrad

30 proposals submitted in 2002
29 proposals approved in Sept. 2002
200 scientists involved from
60 institutes and
11 countries

- 11 proposals were combined in a joint project (peak brightness collaboration)
- 2 proposals were combined into one project on biological samples (Hajdu, Chapman)

→ 18 projects,
 16 are ready and have been scheduled for beamtime

User operation 15.08. – 04.09.2005

total available beamtime: 16 weeks with 13 user shifts + 1 maintenance shift per week

» 208 user shifts total (12 hour shifts)

14 out of 16 projects had beamtime 2 are scheduled in May' 06

roughly 10-14 shifts/project

- Femtosecond time-resolved experiments
 - Synchronization FEL optical laser (Drescher, Meyer)
 - Pump-probe expts. on atoms and molecules (Meyer, Drescher)
 - Sum-frequency generation (Starke)

Interaction of ultra-intense XUV pulses with matter

- Multi-photon excitation of atoms, molecules, clusters... (*Richter, Becker, Moshammer, Möller*)
- Creation and characterization of dense plasmas (Lee et al.)
- Imaging of biological samples (Hajdu/Chapman)

Investigation of extremely dilute samples

- Photo-dissociation of molecular ions (Wolf)
- Highly charged ions (Crespo)
- Mass selected clusters (Meiwes-Broer)

Investigation of surfaces and solids

- Laser desorption (Zacharias)
- Non-linear effects and surface dynamics (*Föhlisch*)
- Luminescence (Kirm)
- Nano-spectroscopy of surfaces and solids (*Kipp*)

"Peak brightness collaboration" R.W. Lee et al.

Ablation studies of Si, time-resolved through illumination by optical laser pulse

K. Sokolowski-Tinten et al.

UttAblation of carbon coating on SiImage: R. Sobierajski et al.

single shot spectra !!!

4d¹⁰ 5s² 5p⁶

Single shot correlation fundamental - third harmonic

Düsterer et al. Opt.Lett. 2006, accepted

Two-photon ionization: towards two colour pump-probe

FEL: 32 nm, 1 - 3 μ J, 50 μ m focus, 50 fs, ~ 10¹² W/cm² Laser: 523 nm, 250 μ J, 50 μ m focus, 12 ps, ~ 10¹¹ W/cm²

Photoelectron spectroscopy as function of pulse energy

PGM Monochromator M. Martins, M. Wellhöfer 10 000 < E/∆E < 50 000. 2nd and 3rd harmonic ~1% 4th harmonic ~1‰ or 0th order

Goal: Time-resolved and element specific spectroscopy of dynamics of excited states

N₂ Photoemission as a function of pulse energy

UH

See also M. Richter et al.

He 1s Photoemission

He 1s: 2.77 Mb/atom, BE He 1s: 24.587 eV

J.-J. Yeh and I. Lindau, "Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters: 1 < Z < 103," *At. Data Nucl. Data Tables* **32**, 1 (1985).

J.-J. Yeh, Atomic Calculations of Photoionization Cross Sections and Asymmetry Parameters (Gordon and Breach, Langhorne, PA, 1993).

Resonant two-photon absorption

Towards time resolved spectroscopy

single shot photoemission spectra feasible even with higher harmonics

At high peak brillance space charge limitations.

iii

Simulation of coulomb explosion

Program courtesy Klaus Flöttman, DESY Astra

The future is bright !

UHI #

and exciting !

M. Beye A. Föhlisch S. Gieschen F. Hennies J. T. Hoeft M. Nagasono H. Meyer A. Pietzsch F. Sorgenfrei E. Suljoti M. Wellhöfer

The FLASH team S. Schreiber J. Feldhaus

bmb+f

Großgeräte der physikalischen Grundlagenforschung