
PRODUCTION OF COHERENT X-RAYS WITH A FREE-ELECTRON 
LASER BASED ON OPTICAL WIGGLER 

V. Petrillo, Physics Department, University of Milan, Via Celoria16, 20133 Milano, Italy               
A. Bacci, C. Maroli, L.Serafini, Sezione di Milano INFN, Via Celoria16,  20133 Milano, Italy       

M. Ferrario, LNF- INFN, Via E. Fermi 40, 00044 Frascati, Italy 

                                                                                                                       
Abstract 
The interaction between high-brilliance electron beams 
and counter-propagating laser pulses produces X-rays via 
Thomson back-scattering. If the laser pulse is long and 
intense enough, the  electrons of the beam can bunch on 
the scale of the emitted X-ray wavelength and collective 
effects can occur. These effects give rise to the FEL 
instability and the system behaves like a free-electron 
laser based on an optical undulator. Coherent X-rays can 
be irradiated, with a bandwidth much thinner than that of 
the corresponding incoherent emission. We analyse with a 
3D code the transverse effects in the emission and give a 
generalized form of the Pellegrini criterion which is 
validated on numerical evidence. 

                        INTRODUCTION 
A Thomson back-scattering set-up can be considered in 
principle as a source of X-ray pulses at the same time 
easily tunable and highly monochromatic. Due to recent 
technological developments in the production of high 
brilliance electron beams and high power CPA laser 
pulses, it is now even conceivable to make steps toward 
their practical realisation [1,2]. The radiation generated in 
the Thomson back-scattering is traditionally considered 
incoherent and is calculated by summing at the collector 
the intensities of the fields radiated by each electron [3]. 
If the laser pulse is long enough, however, collective 
effects can take place and even become dominant. In this 
range of parameters the system behaves like a free-
electron laser in which the usual static wiggler is 
substituted with the optical laser pulse.  From the point of 
view of the theoretical description of the process, the 
generation of coherent X-radiation can be demonstrated 
on the basis of the same set of 1D equations that are used 
in the theory of the high-gain free-electron laser amplifier. 
However, many aspects of the process are connected with 
the finite transverse geometry of the electron beam and 
the laser pulse and, in order to give a more precise 
quantitative evaluation of the radiation efficiency, it is 
obviously necessary to consider 3D equations. 
 In this paper, we present some particularly interesting 
data relevant to the solution of a set of 3D equations with 
a discussion of their importance and the conditions that 
allow operating the Thomson back-scattering in a FEL 
mode[4,5].   

 
 

BASIC EQUATIONS AND NUMERICAL 
RESULTS 

 
We write the 3D equations we have used in the usual 
non-dimensional form (see Ref.[5] for details) 
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where the scaled time and space variables are t2t Lρω=                   

and xk2x Lρ=  and 
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is the circularly polarized laser field vector potential, λL = 
2π/kL the laser wavelength, σL the r.m.s. spot radius, 
g(xyzt) the envelope, ωL=ckL the angular frequency and 
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ê yx +=  γ0 is the average value of γ over all 

electrons of the beam at t=0, 0jj / γγ=γ , Pj = pj/γ0ρ, 
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We have developed a three-dimensional code that solves 
the set of equations (1)-(4) and is based on a fourth-order 
Runge-Kutta for the particles and a finite-difference 
scheme for the solution of the Schroedinger-like non 
homogeneous Eq. (4) for the radiation field. An example 
of solution is provided by a beam with the energy content 
of about 15 MeV (a factor of 2 lower than the typical 
Sparc-PlasmonX case), corresponding to <γ>=30,  with a 
mean radius σ0=10 μm, a total charge of 1 nC, a length 
Lb= 200 μm, corresponding to a beam current I=1.5 kA. 
The laser pulse considered in this case has a wavelength 
λL=0.8 μm. Furthermore, the focal spot radius w0 is about 
50 μm with 0La =0.8 so that the radiation wavelength is 

λ= 3.64 Angstrom and ρ = 4.38 10-4. The gain length is 
about 145 μm, the collective effects saturating in 7-12 
gain lengths, i.e. in a time interval of about 5 ps which is 
of the same order as the duration of the laser pulse. The 
quantum parameter q= 0.5, the energy spread Δγ/γ =1.10-4 
the initial normalized transverse emittance being varied 
from 0 up to 2 μm. 
In Fig.1 the average values of the bunching factor and the 
collective potential amplitude are shown in time. In this 
calculation the laser profile is flat inside a region with 
w0=50 μm, the laser parameter is 0La =0.8, the initial 

emittance εn=0.88 μm and the detuning Δω/ω= -2.10-4.  
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Figure 1: Averaged bunching factor (a) and logarithm of 
the radiation intensity (b) versus time in the coherent (1) 
and incoherent (2) cases and for λL=0.8μm , 0La =0.8, 

Δγ/γ=10-4, Δω/ω=-2 10-4, εn=0.88. 
 
The saturation level of the radiation is reached at about 
t=4 ps with the value <|A|2>peak=0.275 and a total number 

of photons 1.86 1010, against the 2.108 provided by the 
incoherent process. The peak brilliance, for this example, 
is 3.7 1025 photons/(sec mm2 mr20.1%), while the 
coherent power is 15.5 MW. 
In Fig.2 the spectrum of the radiation is reported versus 
Δω/(ωρ) for εn=0.44 and 0.88 μm. 
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Figure 2: <|A|2>peak versus Δω/(ωρ) for the case of Fig.1 
and εn=0.44 μm (a) and εn=0.88 μm (b). 
 
We may note a broadening of the emission line of about a 
factor of two with increasing emittance. 
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Figure 3: <|A|2>peak   versus εn for the case of Fig.5, with 
Δω/ω=0. and for a flat laser profile with w0=50 μm and 
aL0=0.8 (curve (a)) and  a Gaussian laser profile with 
aL0=0.8 and σL=106 μm (curve (b)). 
 
 Fig.3 shows the dependence of the radiation intensity at 
saturation on the emittance. Curve (a) is relevant to the 
case of a flat laser pulse with w0=50 μm, while curve (b) 
shows the more critical situation when the laser has a 
Gaussian profile. In this last case the quantity σL= 106 
μm with 0La =0.8, leading to a corresponding increase in  

the laser power. 
We have considerable emission in violation of the 
Pellegrini criterion [6] for a static wiggler. In fact, in case 
(a) of Fig. 3, for instance, the emittance largely exceed the 
value γλ/4π, which is, in this case, about 9 10-4 μm. We 
can justify this result by considering that  the  line width 
in a situation dominated by emittance effects can be 
written as  
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In order to have emission of radiation at the planned 
wavelength, we must assume that the linewidth Δλ/λ < 
αρ, with α a numerical factor not much larger than 1. 
Hence, we can write for the emittance  

                                  0σαρε ≤n .                         (11) 

Considering the definitions of the gain length Lg 
=λL/(4πρ) and of the radiation Rayleigh length 
ZR=2πσR

2/λ, we can express the factor ρ in terms of the 

ratio ZR/Lg, obtaining 
2
R

2
L

g

R

8L

Z

σπ
λλ=ρ . Supposing that the 

electron beam and the radiation overlap, i.e., that σ0=σR, 
and remembering the resonance relation in its simpler 
form  λL=4γ2λ,  we obtain for an  optical undulator  
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where α=
ωρ
δω

.  The usual form of the Pellegrini criterion 

for a static wiggler can be recovered by assuming that 
ZR=Lg and inserting the resonance condition for the static 
undulator. If we take into account the fact that in our case 
ZR/Lg= 1.18 104 and estimating α=2, we can predict 
considerable emission up to an emittance value of εn=0.3 
μm (corresponding to a value of εnx=0.15 mm) which is 
not far from the result of Fig. 3. 
The last Fig.4 shows the most critical effect, i.e., the 
dependence of the signal growth on the transverse energy 
distribution of the laser in the case of a Gaussian pulse 
and for εn=0.44 μm, Δω/ω=-1.10-4, 0La =0.8. In this case, 

in fact, if the Gaussian laser has a spot size with a radius 
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Figure 4: <|A|2>peak   versus w0 for the case of a Gaussian 
laser profile for εn=0.44 μm, Δω/ω = -1.10-4, aL0=0.8. 
 
smaller than 75 μm, the FEL instability does not develop.  
This example is also characterized by a choice of the 
electron beam with an initial emittance larger than in the 
first case and actually not far from the best experimental 
values, but with a larger current. However, one can see 
that the requirements on the total energy of the laser and 
stability of the energy transverse profile are in this case  
particularly demanding. 
Another critical issue is the variation in the laser intensity 
Δ=ΔaL0/aL0, that leads to a broadening in the spectrum of 

the order Δλ/λ= )a.1/(a2 2
0L

2
0L +Δ . For an FEL mode 

operation of the Thomson source, the condition 

Δ
2

0L

2
0L

a

)a1( +≤ ρ  must therefore be added. Assuming  a 

laser pulse duration of cτ= 10 Lg, we can derive a further 
threshold  condition on the laser pulse energy U of the 
form U>18.6 λL/Δ2, which leads to U>0.15/ Δ2   J. 
 
 
                                 CONCLUSIONS 
 
Considerable coherent X-rays radiation is possible as a 
result of the collective interaction between an electron 
beam and a counter-propagating laser pulse that take 
place in a Thomson scattering. If the laser pulse is 
sufficiently long the FEL instability can develop and a 
regime of collective effects is established. The result is an 
emission at least two order of magnitudes larger than the 
usual incoherent emission, with a more narrow and 
peaked spectrum. However, the brilliance and the power 
delivered are a few orders of magnitude smaller than in 
the case of an FEL in the X-ray range operating with a 
static wiggler.    Other critical issues for the appearance of 
collective effects are related with: (i) the current density 
carried by the electron beam which has to be large 
enough, (ii) the initial emittance of the electron bunch 
which must be not much larger than indicated by the 
generalized Pellegrini criterion in (12), (iii) the transverse 
distribution of the laser pulse which must be sufficiently 
homogeneous within the region occupied by the electrons, 
(iv) the fluctuations of the laser intensity and (v) the large 
laser energy content needed .  
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