|
- P. Krejcik
SLAC, Menlo Park, California
|
It will be challenging to measure the temporal profile of the hard X-ray SASE beam independently from the electron beam in the LCLS and other 4th generation light sources. A fast interaction mechanism is needed that can be probed by an ultra-fast laser pulse in a pump-probe experiment. It is proposed to exploit the rotation in polarization of light reflected from a thin magnetized film, known as the surface magneto optic Kerr effect (SMOKE), to witness the absorption of the X-ray pulse in the thin film. The change in spin orbit coupling induced by the X-ray pulse occurs on the sub-femtosecond time scale and changes the polarization of the probe beam. The limitation to the technique lies with the bandwidth of the probe laser pulse and how short the optical pulse can be made. The SMOKE mechanism will be described and the choices of materials for use with 1.5 Å X-rays. A schematic description of the pump-probe geometry for X-ray diagnosis is also described.
|
|
|
Slides
|
|
|