

Commissioning and first lasing of FELiChEM: a new IR and THz FEL oscillator in China

Heting Li on behalf of FELiChEM team

National Synchrotron Radiation Laboratory (NSRL),

University of Science and Technology of China, Hefei, China

National Synchrotron Radiation Laboratory

Introduction of FELiChEM

- Funded by National Natural Science Foundation of China (NSFC) from 2015
- A dedicated light source aiming at energy chemistry
- Consisting of 1 IR-FEL, and 3 research stations: photo-detection, photo-dissociation, and photo-excitation.

Schematic layout

Main FEL parameters

Laser Type	2 Oscillators		
Wavelength Range	2.5-50 μm, 40-200 μm		
Monochromacity	0.3~3%		
Polarization	Horizontal		
Pulse Structure	Macropulse + micropulse		
	Repetition rate: 10/20 Hz		
Macropulse	Width: 5-10 μs		
	Peak Power: ~5 kW (Pulse Energy: ~100 m J)		
	Repetition rate:		
Micropulse	476, 238, 119, 59.5 MHz optional		
	Width: 1-5 ps		
	Peak Power: ~5 MW (Pulse Energy: ~50 μJ)		

Accelerator

Main e-beam parameters

Parameter	Target	Achieved
Electron energy	15- 60 MeV	25-60 MeV
Energy spread	<240 keV	<200 keV@35MeV;
		<240 keV@60MeV
Normalized	<30 mm·mrad	40-50 mm·mrad
emittance		
Bunch charge	∼1 nC	~1.2 nC
RMS bunch	1-5 ps	~4.5 ps
length		(w/o chicane)

FEL oscillators

MIR oscillator

FIR oscillator

Commissioning status

- We experienced two stage commissioning
 - 1st stage: Jul. 24 Sep. 27, 2018
 - **DC beam** from the e-gun (without grid pulser)
 - Heavy beam load and large space radiation dose inside the tunnel
 - Failing in detecting the IR undulator spontaneous radiation inside the tunnel due to the strong jamming
 - > 2nd stage: May. 24 Jul. 22, 2019
 - **Pulsed beam** from the e-gun (238/119/59.5/29.75 MHz)
 - Detecting the IR radiation in the experimental hall
 - Success in observing the spontaneous radiation and the lasing signal in the first day of the FEL commissioning (9 June)
 - Shutdown on 22 Jul. to replace some components for improving the e-beam quality

FEL commissioning in 2nd stage

First lasing

Undulator spontaneous radiation

- Detected by a liquid-nitrogen cooled MCT (HgCdTe) @ 15 μm
- measured: 38 μW @ Endstation-1
 - 20 m away from undulator exit
 - Passing through 2 windows & reflected by 7 mirrors
- Calculated: 60-180 μW @ undulator exit

First lasing

Black line: FEL signal from a pyroelectric probe

IR light spot @ Endstation-1

- First lasing @ 15 μm
- Detected at Endstation-1
 by a pyroelectric probe
 and a pyroelectric
 camera
- Max. **~27** μJ /micropulse

Measured results

Detuning curve

Lasing was observed over a cavity length scan range of about 10 times of radiation wavelength.

- 4-30 um.
- What happened to 20 um FEL?
 Absorption or power gap?
- It will be studied in next run.

Wavelength coverage

Future plans

Measurement of the basic FEL

- Spectrum
- spectral range
- temporal structure

* Increasing the electron beam current

- > rep. rate of microbunch
- > rep. rate and pulse width of macrobunch

* First user experiment with the mid-infrared FEL

- doing our best to make the MIR FEL stable
- commissioning the FIR oscillator in timesharing mode

Thanks for your attention!

