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Abstract
The stringent energy spread requirement of the XFELO

poses a challenge for its application in storage rings. One
way to overcome this is by using a transverse gradient un-
dulator (TGU) [1]. The TGU gain formula was discussed
previously [2,3]. In this paper, we begin by reviewing the an-
alytical 3D gain formula derived from the gain convolution
formula. Following that, we apply numerical optimization
to investigate the optimal beam and field parameters for max-
imal TGU gain. We found that a small emittance ratio (i.e.
“flat beam” configuration) has a strong positive impact on
TGU gain, as well as other patterns in the optimal parame-
ters.

THEORY
An in-depth exploration of TGU physics can be found

in [2]. Here, we provide an essential summary. A TGU
scheme has two key ingredients. First, we introduce disper-
sion upstream of the TGU that correlates electron position
and energy, i.e.

y = y0 + Dη, (1)

where D is the dispersion strength and y0, η are the initial ver-
tical electron position and relative energy deviation respec-
tively. (We assume here that the TGU acts in the y-direction.)
Secondly, the TGU introduces a linear dependence in K on
transverse displacement, i.e. K(y) ≈ (1 + αy)K0, where
K0 is the on-resonance undulator parameter and α is the
TGU magnetic gradient. Then, we can cancel out the energy
spread by requiring

αD = (2 + K2
0 )/K

2
0 (2)

The TGU is only effective if Dση � σy , i.e. if beam size is
primarily dominated by dispersion.
The 3D gain formula in this scenario is derived to be

G =
G0
4π

∫ 1/2
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where

Γ =
Dση
σy

, x = πNu∆ν, (4)

σ̃η = 2πNuση, β̃y = βy/Lu, (5)

G0
4π
= 4πγr

I
IA

K2
0 [JJ]2

(1 + K2
0/2)2

N3
uλ

2
1, (6)

and σx,y are the RMS electron beam sizes, Lu, Nu are the un-
dulator length and number of undulator periods respectively,
∆ν ≡ (1 − λ/λ1) is the detuning factor based on resonant
FEL wavelength λ1, ση is the relative energy spread, βx,y is
the respective betatron function, γr is the resonant Lorentz
factor, I is the beam current, IA ≈ 17 kA is the Alfvén cur-
rent, [JJ] ≡ J0[K2

0/(4 + 2K2
0 )] − J1[K2

0/(4 + 2K2
0 )] is the

Bessel factor, and
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Here, σpx,py are the RMS electron beam divergences, σrx,ry

are the RMS radiation beam sizes, and σφx,φy are the RMS
radiation beam divergences.

In the context of a storage ring, there is a further constraint
on the transverse emittances, namely εx+εy = εx,0, with εx,0
being the natural electron beam emittance [4]. We define
the coupling constant kc such that

εx =
εx,0

1 + kc
, εy =

kcεx,0
1 + kc

. (12)

Modern storage rings are capable of operating in both round
(kc = 1) and flat (kc � 1) beam configurations. Therefore,
the coupling constant will be an important parameter in our
investigation.

NUMERICAL OPTIMIZATION
We wish to optimize gain, as given by Eq. 3, with respect

to electron and radiation beam parameters.In each optimiza-
tion run, we fixed {εx,0, ση} and scan over kc ranging from
0.001 to 1. At each value of kc , the optimal parameters
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Table 1: Hypothetical Storage Ring Parameters (derived
from PETRA-IV) [5]

Name Symbol Value

Electron beam
Rel. gamma γr 1.166 × 104

Beam current I 40 A

Output radiation
Res. energy ~ω1 14.4 keV
Rad. emittance εr 6.85 pm

Undulator
Undulator period λu 1.5 cm
Number of periods Nu 2000
Undulator parameter K0 1.06

were found via the hill climber algorithm [6]. There are
six “core” parameters which form our search space: the
beta functions βx, βy which determine electron beam size,
the Rayleigh ranges ZRx, ZRy which determinine radiation
beam size, the dimensionless TGU factor Γ characterizing
the strength of the TGU, and finally the dimensionless de-
tuning x = πNu∆ν.
From the six core parameters we also investigate several

“derived” parameters: radiation beam aspect ratio αrad ≡��Ey

��2/|Ex |
2, dispersion D, and TGU magnetic gradient α,

all of which may be practical values of interest. All other
machine parameters are typical of a 4th generation light
sources such as PETRA-IV or APS-U. Refer to Table 1.

Simulation Considerations
We explored a number of different optimization algo-

rithms, including gradient descent, simulated annealing and
simple hill climber. Ultimately, we chose the hill climber al-
gorithm due to its simplicity and the (empirically observed)
convex nature of the objective function. Provided reason-
able starting parameters, a simple hill climber algorithm
converged relatively quickly and reliably.
We also imposed the constraint ZRx = βx to simplify

the search space. While they are in principle independent
parameters, we found in practice that their optimal values
are often equal. This result is unsurprising since we expect
the largest gain when the radiation mode shape overlaps that
of the electron beam [3].

RESULTS
Varying Natural Emittance
Figure 1 (top) shows the optimal gain with respect to kc

for fixed ση = 0.15% and different values of εx,0. There are
two key observations. First, with smaller kc (i.e. flatter elec-
tron beam), gain increases dramatically, by up to an order of
magnitude. Secondly, gain also increases with decreasing
εx,0 (perhaps unsurprisingly). In this case, the highest gain
was obtained when εx,0 = εr = 6.85 pm. Figure 2 shows
the optimal beta functions. With smaller kc , the optimal

Figure 1: Optimal gain vs kc for varying εx,0 (top) and ση
(bottom).

Figure 2: Optimal βy (top) and βx (bottom) vs kc for varying
εx,0.

βy decreases and so does its sensitivity to εx,0. In fact, for
log10 kc . −1.5, the optimal βy is apparently independent
of εx,0. The opposite behavior is observed in βx . We at-
tribute this behavior to the constraint εx + εy = εx,0, whence
decreasing kc decreases εy and increases εx simultaneously.
Thus changing εx,0 affects a particular direction less if its
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Figure 3: Optimal beam aspect ratio αrad vs kc for varying
εx,0.

“share” of the natural emittance is smaller. In addition, if we
decrease εx,0 such that it is comparable to εr , the optimal
βx,y becomes relatively independent of kc .
Figure 3 shows the optimal radiation beam aspect ratio.

Interestingly, with smaller kc the optimal aspect ratio tends
to 1. In other words, the optimal radiation mode shape is
approximately round.

Varying Energy Spread
Figure 1 (bottom) shows the optimal gain for different ση .

In addition to observations made in the previous subsection,
we also see that smaller ση leads to higher gain, as expected.

Figure 4: Optimal disperson (top) and magnetic gradient
(bottom) vs kc for varying ση .

Interestingly, most optimal parameters are relatively in-
dependent of ση . These include the beta functions, beam
dispersion D and TGU magnetic gradient α (Figure 4).

CONCLUSION
The results clearly indicate that a flat-beam configuration

(i.e. kc � 1) greatly enhances gain in a TGU-enabled
storage ring. This is easily satisfied in a storage ring, where
the vertical emittance contribution primarily comes from
magnet misalignments or coupling [4]. Typical values of
kc in modern storage rings can approach ∼ 102 or smaller.
From Figure 1, we see that large gain (often greater than 1)
can be achieved in this regime, even with generously large
εx,0 and ση .

There are also several empirical observations to be made
regarding optimal beam and machine parameters. First, for
small kc , the optimal βy becomes independent of εx,0 and
ση (Figure 2). Second, for small kc , the output radiation
tends towards an aspect ratio of unity (Figure 3). This could
prove useful in applications where a round radiation mode
is desired. It is unclear at the moment whether this behavior
is truly asymptotic, and how it could be explained from an
analytical standpoint. Finally, we observed that ση does not
significantly impact any of the optimal parameters within
the range tested. At first glance, this is surprising given that
ση shows up prominently in the numerators of the latter
two terms in the exponent of Equation 3. However, it is
also “hidden” in the definitions of Γ and Dy , belying its
complicated role in the gain equation.
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