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Abstract
The existing 1D models of the coherent synchrotron radi-

ation (CSR) wakefield in free space assume that the longi-
tudinal bunch distribution remains constant when the beam
propagates through a magnetic lattice. In this paper, we
derive a formula for a 1D CSR wake that takes into account
variation of the bunch length along the orbit. The formula is
valid for arbitrary curvilinear beam trajectory. We analyze
the validity of the 1D model in a typical implementation of
an FEL bunch compressor.

INTRODUCTION
When the trajectory of a relativistic beam is bent by mag-

netic field, the beam radiates electromagnetic field and ex-
periences a radiation reaction force. A popular 1D model
for this force in the case of a circular motion, often called
the coherent synchrotron radiation (CSR) wake, was first
developed in Refs. [1–3]. A generalization of this model for
the case of a bending magnet of finite length is described in
Refs. [4, 5] and is implemented in several computer codes1.
These models assume a constant bunch length, σz , along the
orbit. Their applicability becomes questionable in a bunch
compressor where σz(s) is a function of the beam position s.
In practice, one usually substitutes a local bunch lengthσz(s)
into the formulas derived with the assumption σz = const.
Such a substitution, strictly speaking, is not justified because
it ignores the fact that the wake is formed by the beam ra-
diation emitted at previous times, when the bunch length
is different from the value of σz at the moment when the
wake interacts with the beam. More recently, in Ref. [6], a
1D CSR model was derived from Jefimenko’s form for the
electric field of a relativistic beam with an attempt to include
a time dependent bunch length by heuristically introducing
σz(t) into equations derived with the assumption of constant
bunch length.

In this paper, we derive a 1D CSR wake that takes into
account the variation of the bunch length along the orbit.
Our derivation is based on the 3D formulas from Ref. [7].

We use the CGS system of units throughout this paper.

FORMULA FOR THE LONGITUDINAL
WAKE IN 3D

We begin from the formulation of general 3D wake from
Ref. [7]. In 3D, the beam is represented by its charge density
ρ(r, t) that depends on time t and the position vector r , and
its velocity 3(r, t), with the beam current density j given
∗ Work supported by the Department of Energy, contract DE-AC03-

76SF00515
† stupakov@slac.stanford.edu
1 Here, we only deal with the longitudinal part of the forces in the bunch

that changes particles’ energy in the beam; for the effect of the transverse
force, see a recent study [8].

by the product j = ρ3. Note that in this model assigning a
particular value of 3 at each point we neglect the uncorrelated
velocity spread in the beam due the the angular and energy
spread — an approximation that is typically well satisfied
for relativistic beams. For given functions ρ(r, t) and j(r, t),
one can derive an equation for the electric field in the beam,
E(r, t), and calculate the instantaneous energy change per
unit time and per unit charge, P,

P(r, t) = 3(r, t) · E(r, t). (1)

We will loosely call P the longitudinal wake, although the
classical wake fields are typically associated with the energy
loss integrated over the beam path and the transverse cross
section of the beam.

A general expression for the quantity P is given in Ref. [7].
It consists of three terms two of which in many cases are
much smaller that the third one. We neglect these terms in
our analysis leaving only the dominant one:

P(r, t) = −c
∫

d3r ′

|r ′ − r |
[β(r, t)

−(β(r, t) · β(r ′, tret))β(r
′, tret)] · ∂r′ρ(r

′, tret), (2)

where β = 3/c, tret(r, r
′, t) = t − |r ′ − r |/c, and we use the

notation ∂r′ρ(r ′, tret) to indicate differentiation with respect
to the space coordinates in function ρ(r ′, tret) with a fixed
tret (in other words, the operator ∂r′ ignores the fact that
tret also depends on r ′). Note that due to the factor |r ′ −
r |−1 the integrand has a singularity at r ′ → r , however,
this singularity is integrable2. The singularity disappears
in the ultra-relativistic limit |β | = 1 because the factor in
square brackets vanishes when r → r ′. As one can see,
the integral (2) is taken over the volume around the beam
trajectory at preceding times tret < t.

1D MODEL
It is known that the transverse size of the beam, σ⊥, does

not affect the CSR wake if σ⊥ ≲ (σ2
z R)1/3, where R is

the bending radius [3] (see, however, discussion below).
Assuming that this is the case, we can simplify integral (2)
and derive a 1D model for the wake P. In 1D all particles
in the beam move along a curve given by the radius-vector
r0(s), where s is the path length measured along the orbit.
Positions in the vicinity of this orbit are represented in a
Frenet–Serret coordinate system as r0(s) + x̂(s)x + ŷ(s)y,
where x̂(s) and ŷ(s) are the unit vectors perpendicular to
the tangential vector, τ(s) ≡ dr0/ds, and each other so that
x, y and s constitute a local orthogonal coordinate system.
In what follows we will assume an ultra-relativistic beam
2 It is also integrable in a 2D model when the three dimensional integration∫

d3r′ is replaced by
∫
d2r′. It is not integrable in 1D.
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with |β | = 1. The velocity is everywhere directed along the
trajectory, so we can identify β with the tangential vector,
β = τ(s). We then write Eq. (2) as

P(s, t) = −c
∫

ds′ dx ′ dy′

|r0(s′) − r0(s)|
[τ(s)

−(τ(s) · τ(s′))τ(s′)] · ∂r′ρ(x ′, y′, s′, tret), (3)

where we have associated the observation vector r with r0(s)
(the wake is calculated on the beam orbit) and replaced r ′ by
r0(s′)3. We note that τ(s) · τ(s′) is the projection of vector
τ(s) onto the vector τ(s′) and subtracting (τ(s) · τ(s′))τ(s′)
from τ(s) gives a part of the vector τ(s) that is perpendicular
to τ(s′). Denoting this difference by m(s, s′),

m(s, s′) = τ(s) − (τ(s) · τ(s′))τ(s′), (4)

we have m(s, s′) ·τ(s′) = 0, and hence this vector has only x ′

and y′ components at s′. Using this vector, we can re-write
Eq. (3) as

P(s, t) = −c
∫

ds′ dx ′ dy′

|r0(s′) − r0(s)|
m(s, s′) · ∂r′ρ(x ′, y′, s′, tret)

= −c
∫

ds′ dx ′ dy′

|r0(s′) − r0(s)|
[mx′(s, s′)∂x′ρ(x ′, y′, s′, tret)

+my′(s, s′)∂y′ρ(x ′, y′, s′, tret)
]
. (5)

At a first glance, it seems that this integral is equal to zero
because we integrate partial derivatives of ρ with respect to
x ′ and y′ over x ′ and y′ from minus to plus infinity, and, of
course, the distribution function goes to zero at |x ′ |, |y′ | →
∞. However, at this point we need to take into account the
dependence of tret = t − |r − r ′ |/c versus x ′ and y′. In our
curvilinear coordinate system, vector r − r ′ can be written
in the following way:

r − r ′ = r0(s) + (x̂x + ŷy) − r0(s′) − (x̂ ′x ′ + ŷ ′y′), (6)

where we use the notations: x̂ = x̂(s), x̂ ′ = x̂(s′), and simi-
lar abbreviations for the y components. Given the assumed
smallness of the transverse size of the beam, we will use
the Taylor expansion of tret, keeping only linear terms in x ′

and y′ (the linear terms in x and y will be annihilated by the
integration by parts below, so we ignore them),

tret ≈ t −
1
c
|r0(s) − r0(s′)|

+
1
c

r0(s) − r0(s′)
|r0(s) − r0(s′)|

· (x̂ ′x ′ + ŷ ′y′). (7)

We then expand function ρ,

ρ(x ′, y′, s′, tret) ≈ ρ

(
x ′, y′, s′, t −

1
c
|r0(s) − r0(s′)|

)
+ ∂t ρ

(
x ′, y′, s′, t −

1
c
|r0(s) − r0(s′)|

)
×

1
c

r0(s) − r0(s′)
|r0(s) − r0(s′)|

· (x̂ ′x ′ + ŷ ′y′). (8)

3 Replacing d3r by ds′ dx′ dy′ we ignore the Lamè coefficients in the
curvilinear coordinate system x, y, s. The account of these coefficients
would add only small corrections to our results.

Substituting this expression into (5) we note that the first
term in ρ vanishes after the integration over x ′ and y′, and
the second term, after integration by parts, gives

P(s, t) =
∫

ds′
(r0(s) − r0(s′)) · m(s, s′)

|r0(s′) − r0(s)|2

× ∂tλ

(
s′, t −

1
c
|r0(s) − r0(s′)|

)
, (9)

where λ is the longitudinal distribution function of the beam

λ(s, t) =
∫

dx ′dy′ρ(x ′, y′, s′, t). (10)

Note that the integrand in the 1D integral (9) does not have
a singularity at s′ → s because both terms in the numerator,
r0(s) − r0(s′) and m(s, s′), vanish when s′ = s.

Using the method of images, Eq. (9) can be also general-
ized for the case when a plane beam orbit lies between two
parallel conducting plates.

TRANSIENT CSR WAKE IN A BEND
MAGNET

To benchmark Eq. (9) against known solutions of 1D
CSR problems, we first calculated the steady-state wake for
a short Gaussian bunch, σz ≪ R, moving in a circular orbit
of constant radius R. Our result (not shown here) agrees
very well with the wake profile which can be found in the
literature.

Another benchmark problem, that of a bending magnet of
finite length L was studied in Refs. [4, 5]. In this problem,
the beam travels on an arc of radius R inside the magnet,
− 1

2 L < s < 1
2 L. Outside of the magnet, the beam moves

with 3 = c along straight lines tangential to the circular orbit
at the points of entrance and exit, respectively. For the sake
of comparison, we have chosen the same set of parameters as
in Ref. [5]: R = 1.5 m, σz = 50 µm, Q = 1 nC and L = 25
cm.

We first calculated the wake inside the bunch when it
enters the bend from a straight line. The plot of this wake at
various distances from the magnet entrance edge is shown
in Fig. 1 by solid lines. For comparison, the dashed green
lines show the result of 1D model computed in Ref. [5].

We have also calculated the wake in the bunch after it exits
the bend magnet and continues to travel along a straight line,
and found an excellent agreement of our theory with the 1D
model of Ref. [5].

CSR WAKE IN A BUNCH COMPRESSOR
A much more difficult problem is presented by a chicane

bunch compressor consisting of four dipole magnets. To
illustrate how Eq. (9) can be used in a situation when σz
varies with s, we calculated the CSR wake in a configuration
studied at the CSR workshop at DESY-Zeuthen in 2002 [9].
The four magnets have the length L = 0.5 m with the bending
radius R = 10.35 m resulting in the momentum compaction
factor R56 = 2.5 cm. In our simulations, the beam with
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Figure 1: Longitudinal wake in the bunch as a function of
distance from the entrance edge of the bend shown by a
number near each curve. The longitudinal coordinate z in
each case is measured from the center of the bunch.

the energy of 5.0 GeV and Gaussian distributions in energy
and coordinates is compressed from the initial rms length of
200 µm to the final length of 150 µm, as shown in Fig. 24.
The beam charge is 1 nC, the slice energy spread is 10−4,
and the energy chirp is −10 m−1. We calculated the CSR
wake in the middle of the second and third magnets as well
as at the center of the chicane, see Fig. 2.
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Figure 2: Variation of the bunch length σz(s) through the
second and third magnets of the chicane (the magnet edges
are shown by red dashed lines). The coordinate s = 0 corre-
sponds to the center of the chicane. The blue dots show three
positions in the chicane where the CSR wake was calculated.

The wake calculated in the 1D model with the help of
Eq. (9) is shown in Fig. 3 by solid lines. These wakes are
compared with the wakes calculated with a 2D version of
Eq. (2) (shown by dashed lines). The 2D wakes plotted as
a function of z are actually calculated along the axis of the
tilted beam, that is at x = z tanα, where α is the tilt angle
(α = 72◦ at the center of the chicane). The plots show a
considerable difference between the 1D and 2D wakes. We
discuss the origin of this difference in the next section.

4 We have intentionally chosen a small compression factor in an attempt to
improve the applicability of the 1D model for the CSR wake.
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Figure 3: Wakes calculated in 1D model are shown by solid
lines: black — in the middle of the second magnet (s =
−0.75 m), blue — at the center of the chicane (s = 0),
and red — in the middle of the third magnet (s = 0.75 m).
Dashed lines (with the corresponding color) are calculated
for the same locations using a 2D version of Eq. (2). The
coordinate z is normalized by the rms bunch length, σz(s).

DISCUSSION
The simple 1D models [2–4,6] of the CSR wake have two

important limitations when applied to bunch compressors.
First, they assume a constant bunch length, and, second,
they ignore the tilt of the bunch with an energy chirp when
it passes through the region of large dispersion. In contrast
to the previous theories, our Eq. (9), takes the variation of
the bunch length into account but it still misses the bunch
tilt. This is the reason of noticeable discrepancy between
our 1D and 2D calculations in Fig. 3.

It is often assumed that a 1D model that ignores the trans-
verse size of the beam is supposed to work when the fol-
lowing condition [3] is met: σ⊥ ≲ (σ2

z R)1/3. This is well
satisfied for the parameters of the chicane studied in the pre-
ceding section: at the center of the chicane σ⊥ = 0.54 mm,
σz = 175 µm, and (σ2

z R)1/3 = 6.8 mm; however, as Fig. 3
shows, our 1D model does not agree with the more accurate
2D one. One can argue that a more accurate estimate should
use not the total bunch length σz , but the lengths of a longi-
tudinal slice of the beam (say, for x = 0), σz,x=0 = 16 µm,
which makes (σ2

z,x=0R)1/3 = 1.3 mm, but even this estimate
apparently underestimate the effect of the beam tilt, as our
results demonstrate.

We note that our choice of a relatively small energy chirp
in the beam, and hence a small compression, was motivated
by the desire to minimize the effect of the beam tilt when
it passes through the second and third magnets. For the
compression factor of 10 originally studied in [9], the tilt is
much stronger, and the 1D model even less likely to work
near the center of the chicane. It should work, though, in
the last magnet of the chicane where the bunch is already
compressed longitudinally and the tilt gradually vanishes
together with the dispersion. Our results indicate that one
has to be very careful when simulating the beam dynamics
in chicanes using a 1D model of the CSR wakefields.
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