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Abstract
Awell established model for studying the micro-bunching

instability driven by longitudinal space charge in ultra-
relativistic bunches in FEL-like beamlines can be identified
as a time-discrete Vlasov system with general drift maps and
Poisson type collective kick maps. Here we present an arbi-
trary order perturbative approach for the general system and
the complete all-orders solution for a special example. For
this example we benchmark our theory against our Perron-
Frobenius tree-code.

INTRODUCTION
Longitudnial dynamics in the magnetic bunch-

compressors of free-electron laser injectors can drive
a micro-bunching instability, deteriorating the electron
bunch quality [1, 2]. As established in References [3, 4]
the space-charge driven micro-bunching effect – in the
ultra-relativistic limit – be investigated by means of an time-
discrete model. In this model the longitudinal dynamics of
the system are exactly captured by a combination of drift
maps D[λ] : R2 → R2

D[λ] : z = (q, p) 7→ (q + λ(p), p)

with a dispersion function λ ∈ C1(R,R) and kick maps
K[k] : R2 → R2

K[k] : (q, p) 7→ (q, p + k(q))

with a kick function k ∈ C1(R,R). The collective nature of
the micro-bunching is accounted for by adopting the Vlasov-
picture, where the electron bunch is described by its prob-
ability density in phase space Ψ : R2 → R. A remarkable
property of the model is the fact that it remains exactly solv-
able in terms of time-discrete maps, even in presence of
collective kick functions k[Ψ]. It can be shown that a phase-
space density (PSD) evolves as

Ψ(x) 7→ Ψ(M−1(x))

where M is the solution of the equations of motion of the
system. A PSD is therefore propagated by objects defined
by

MΨ := Ψ ◦ M−1

called Perron-Frobenius operators (PFO). The overall effect
of a single bunch-compressor stage is then given by

M[Ψ] = DChicKCavK[Ψ]SC
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whereDChic is the PFO associated to the drift map describing
the dispersive magnetic chicane. KCav andKSC are the PFOs
of the kick maps describing the impact of the accelerating
cavity and the collective self-interaction of the bunch in the
field-free region upstream of the chicane, respectively. Thus
the complete time-discrete Vlasov system is defined by

Ψ 7→ M[Ψ]Ψ .

PERTURBATION THEORY
The effect that initially small perturbations εφ of an other-

wise homogeneous charge distributionΨ amplify themselves
by virtue of a collective self-interaction

M[Ψ + εφ](Ψ + εφ) (1)

is generally referred to as Micro-bunching. While PFOs
are linear operators in the sense thatM(c1Ψ1 + c2Ψ2) =
c1MΨ1 + c2MΨ2, collective PFOs are generally not linear
in their internal dependence on the PSDM[c1Ψ1 + c2Ψ2] ,
c1M[Ψ1]+c2M[Ψ2]. This drives the need for a perturbation
theory to investigate Equation (1), as derived in [4,5]. It has
been shown that Equation (1) for a general collective PFO
M[Ψ] can be expanded in ε

M[Ψ0 + εφ0](Ψ + εφ0) =M[Ψ0]Ψ0 + o(εN+1)

+

N∑
n=1

εn
(
M(n)[Ψ0]φ

n
0Ψ0 +M

(n−1)[Ψ0]φ
n
0

)
≡ Ψ1 +

N∑
n=1

εnφ1,n + o(εN+1),

(2)

where M(n) is the n-th Frechet derivative of M. Ψ1 ≡
M[Ψ0]Ψ0 is the solution of the unperturbed system.

For a collective PFO of the form

M[Ψ] = LK[k[Ψ]] (3)

with an arbitrary non-collective PFO L it can be shown that
the n-th order propagated perturbations take the form

φ1,n = (−1)nM[Ψ0]
( k[φ0]

n ◦Q
n!

∂npΨ0

−
k[φ0]

n−1 ◦Q
(n − 1)!

∂n−1
p φ0

)
,

(4)

where the projection operator Q : R2 → R

Q : (q.p) 7→ q

has been introduced. For a detailed derivation see References
[4, 5].
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EXAMPLE: LONG BUNCH, HARMONIC
MODULATION

Consider an long bunch with undisturbed PSD Ψ0(q, p) =
Λ(α; q)ξ(0, σ; p), where ξ(µ, σ; ·) is a Gaussian distribution
and

Λ(α; q) ≡


1/α −α/2 ≤ q ≤ α/2
0 |q | ≥ α/2 + d
smooth α/2 ≤ |q | ≤ α/2 + d

(5)

with d � α and α large enough to make edge-effects negli-
gible. Let

M[Ψ] = D[q 7→ βq]K[k[Ψ]], (6)

k[Ψ] = G ∗
∫
R
Ψdp being a Poisson-type collective kick

with Greens function G. This setup corresponds to a sin-
gle bunch compressor stage with vanishing RF-Voltage and
therefore no actual compression. For disturbances of the
form εφ0(q, p) = Ψ0(q, p)S(q) it can be shown that the prop-
agated disturbances (4) take the form

φ1,n =(−1)nΛ(α; q)ξ(0, σ; p)( k[φ0]
n(q − βp)
n!

H̃n(σ; p)

−
k[φ0]

n−1(q − βp)
(n − 1)!

S(q − βp)H̃n−1(σ; p)
)
,

(7)

where H̃n(σ; p) ≡ Hn(p/
√

2σ2)(−
√

2σ2)−n the modified
n-th Hermite polynomial.
For a sinusoidal modulation S(q) ≡ µ sin(κq) the collec-

tive kick function can be solved explicitly

k[φ0](q) = µ̂κ cos(κq),

with µ̂κ ≡ τµ=G̃(κ)/α, where τ is proportional to the length
of the chicane and G̃(κ) is the Fourier transform of the
Greens function (impedance). Of particular interest for the
investigation of microbunching effects is the evolution of the
spatial charge densities of the propagated disturbance terms
ρ1,n(q) =

∫
R
φ1,n, which for the example at hand can be

calculated explicitly, albeit with significant algebraic effort
as carried out in [5]. Depending on the evenness of n two
different terms are obtained

ρ1,n,even =
(−1) n2 µ̂nκ βnκn

n! 2n−1 α

{ n
2∑

k=1

(
(8)(

n
n
2 − k

)
cos(2kκq)(2k)ne−

1
2 (2kσβκ)

2

+
nµ
µ̂κ βκ

(
n − 1
n
2 − k

) [
cos(2kκq)(2k)n−1e−

1
2 (2kσβκ)

2

− cos([2k − 2]κq)(2k − 2)n−1e−
1
2 (σβκ[2k−2])2

] ) }
.

ρ1,n,odd =
(−1) n−1

2 µ̂nκ β
nκn

n! 2n−1 α

{ n−1
2∑

k=0

(
(9)(

n
n−1

2 − k

)
sin(κq[2k + 1])(2k + 1)ne−

1
2 (σβκ[2k+1])2

+
nµ
µ̂κ βκ

(
n − 1

n−1
2 − k

) [
sin(κq[2k + 1])(2k + 1)n−1e−

1
2 (σβκ[2k+1])2

− sin(κq[2k − 1])(2k − 1)n−1e−
1
2 (σβκ[2k−1])2

] )
−

nµ
µ̂κ βκ

(
n − 1
n−1

2

)
sin(κq)e−

1
2 (σβκ)

2
}
.

While we can report that direct numerical evaluation has
shown that the sum

∑N
n=1 ρ1,n does converge (albeit slowly)

for N →∞ over a wide range of parameters, a formal inves-
tigation of its convergence properties is still outstanding.

SIMULATION
In order to verify the presented analytical results we com-

pare them to simulations using our tree-based Perron Frobe-
nius code [6]. The lower plots in Figures 1 show the propa-
gated PSDs

Ψ1 = D[q 7→ βq]K[k[Ψ0]]Ψ0,

where the initial density – as above – is given by

Ψ0(q, p) = Λ(α; q)ξ(0, σ; p)[1 + µ sin(κq)].

For the impedance term, we chose a model that treats the
longitudinal space-charge force as the force that a cylindrical
bunch with radius a exerts on an electron on its axis

=G̃(κ) =
2

a2 κ
[1 − a |κ | K1(a |κ |)] , (10)

with the first-order modified Bessel-Function K1. In the
upper plots the spatial charge densities obtained from simu-
lation (black) is compared to the analytical result (red) given
by ρ =

∫
R
Ψ1 +

∑N=128
n=1 φ1,ndp. All parameters are the same

in both cases; their explicit value is not meaningful in the
framework of this dimensionless benchmark. In the left plot
the case of vanishing chicane strength β = 0 is depicted
whereas in the right plot β is set to a positive value. It can be
seen that in both cases the analytical and numerical results
are in very good agreement.
The right plot shows the formation of “double horns” in

the spatial charge density: Around this particular chicane
setting β?, the crests of the momentum-modulated PSD
overlap in such a way to form two maxima. For β � β?

only a single maximum resulting from the erecting falling
edge of the modulation is formed. For β � β? the bunching
washes out and is much less pronounced. Investigation of
this effect will be the subject of future work.

CONCLUSION
We have summarized recent advancements of our Perron-

Frobenius-Vlasov perturbation-theory. For a specific, yet
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Figure 1: Comparison of the charge densities obtained from simulation with our Perron-Frobenius code and the analytical
result (top plots), for vanishing (left) and a positive (right) chicane strength. The lower plots depict the PSD calculated by
the code.

practically relevant example the theory is analytically
tractable to arbitrary order and yields predictions for both,
PSD and charge density of the propagated bunch, which
have been presented. A cross-check between analytical and
numerical results has been performed, showing good agree-
ment.
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