# Interaction region of $\mathbf{c}\tau$ project

Bogomyagkov Anton

## Budker Institute of Nuclear Physics, Novosibirsk

## Parameters for interaction region

| Energy, GeV                                | 2    |
|--------------------------------------------|------|
| Beam current, A                            | 1.36 |
| Number of bunches                          | 295  |
| $eta_x,\mathrm{mm}$                        | 20   |
| $eta_y,\mathrm{mm}$                        | 0.76 |
| $\varepsilon_x$ , nm rad                   | 10   |
| Coupling $\varepsilon_y/\varepsilon_x$ , % | 1    |
| Beam length $\sigma_z$ , cm                | 1    |
| Crossing angle, mrad                       | 34   |

| Tune shift $\xi_y$                                          | 0.13              |
|-------------------------------------------------------------|-------------------|
| Particles per bunch                                         | $7\cdot 10^{10}$  |
| Luminosity, $cm^{-2}sec^{-1}$                               | $1 \cdot 10^{35}$ |
| Hour glass $\frac{\sigma_x}{\theta \beta_y}$                | 1.095             |
| Piwinski angle $\varphi = \frac{\sigma_z \theta}{\sigma_x}$ | 12                |

- No bend for incoming beam.
- ◆ No longitudinal field integral over each final focus lens.
- ◆ Longitudinal field is compensated before each final focus lens.
- $\diamond$  Interaction region length less than 100 m.
- ◆ Place for CRAB sextupole.

**Blocks of interaction region** 



## Why telescope

• Map: 
$$\begin{pmatrix} R = \begin{pmatrix} R_{11} & 0 \\ 0 & R_{22} \end{pmatrix}$$
 Twiss transformation:

$$egin{array}{rcl} eta &=& R_{11}^2eta_0\ lpha &=& lpha_0 = 0\ \gamma &=& R_{22}^2\gamma_0 \end{array}$$

2 Simple formulae for chromaticities and  $d\beta/d\delta = 0$ :

 $\begin{aligned} R_{11}(\delta) &= R_{11} + T_{116}\delta + U_{1166}\delta^2 \\ \hline \frac{d\mu_x}{d\delta} &= \frac{T_{126}}{\beta_0 R_{11}} \qquad \left( \frac{d^2\mu_x}{d\delta^2} = \frac{2U_{1266}}{\beta_0 R_{11}} - 2\frac{T_{126}T_{116}}{\beta_0 R_{11}^2} \right) \\ \beta &= R_{11}\beta_0 + \delta \Big[ 2R_{11}T_{116}\beta_0 \Big] + \delta^2 \left[ (T_{116}^2 + 2R_{11}U_{1166})\beta_0 + \frac{T_{126}^2}{\beta_0} \right] \\ \hline \alpha &= \delta \left[ -R_{11}T_{216}\beta_0 - \frac{T_{126}R_{22}}{\beta_0} \right] + \delta^2 \Big[ -\beta_0 \Big( R_{11}U_{2166} + T_{116}T_{216} \Big) - \\ &- \gamma_0 \Big( R_{12}U_{2266} + T_{126}T_{226} + U_{1266}R_{22} \Big) \Big] \end{aligned}$ 

## General chromaticity formulae

$$\frac{d\mu}{d\delta} = \frac{1}{2} \int_{0}^{\Pi} \beta_0(s) \Big[ S(s)D_0(s) - K(s) \Big] ds$$

$$\frac{d^2\mu}{d\delta^2} = \frac{1}{2} \int_0^{\Pi} \beta_1(s) \Big[ S(s)D_0(s) - K(s) \Big] ds + \int_0^{\Pi} \beta_0(s)S(s)D_1(s)ds - 2\frac{d\mu}{d\delta}$$

$$\frac{\beta_1(s)}{\beta_0(s)} = \frac{1}{\beta_0(s)} \frac{d\beta}{d\delta}(s) = -\frac{1}{2\sin(\mu_0)} \int_s^{s+\Pi} \left[S(s')D_0(s') - K(s')\right] \beta_0(s') \times \\ \times \cos\left(\mu_0 - 2|\mu(s') - \mu(s)|\right) ds'$$

$$D_{1}(s) = \frac{dD}{d\delta}(s) = -\frac{\sqrt{\beta_{0}(s)}}{\sin(\mu_{0}/2)} \int_{0}^{s+\Pi} \sqrt{\beta_{0}(s')} \Big[ S(s')D_{0}(s') - K(s') \Big] \times D_{0}(s') \cos\left(\frac{\mu_{0}}{2} - |\mu(s') - \mu(s)|\right) ds'$$

T. Sen and M. Syphers "Second Order Chromaticity of the Interaction Regions in the Collider"

A. Bogomyagkov

- Telescope because of easy tuning and simplicity of chromatic analysis.
- Two pairs of sextupoles at  $n\pi$  phase advance from two FF lenses respectfully and -I map inside the pair.
- $\leftarrow$  CRAB sextupole at  $\mu_x = \pi m$  and  $\mu_y = \pi (2n+1)/2$  from IP and zero dispersion.
- Additional sextupoles: low beta functions but high beta chromaticity, high second order dispersion, weaker than main sextupoles.
- Octupoles: high beta and dispersion.

## **Final lens trajectories**



H invariant



HINV

#### NIR Sextupoles OFF



*Table name = TWISSD* 

#### NIR Main Sextupoles ON



*Table name = TWISSD* 

#### NIR Main & Additional Multipoles ON



*Table name = TWISSD* 

#### Nonlinear elements NIR



#### NIR and ring chromatic functions



W

## NIR and ring $\mu$ dependence on $\delta$



*Table name = TWISSD* 

 $\mu_x (rad/2\pi)$ 



- The Designed interaction region provides luminosity of  $10^{35}$  cm<sup>-2</sup>sec<sup>-1</sup> with not extreme parameters.
- There is freedom in beam-beam tune shift, which allows to decrease coupling coefficient and increase luminosity.
- The presented interaction region satisfies all geometrical constraints.
- Obtained energy acceptance of the Super-ct-factory is small and requires further optimization of the nonlinear chromaticity correction in interaction region and in the arcs.