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Near sum resonances the tunespreads can result in

Landau anti-damping of resonant coherent oscillations

(Ya. S. Derbenev, N. S. Dikansky, All Union PAC,
Moscow 1970, v.2, 391).

Coherent oscillations of colliding bunches become

unstable, when the incoherent oscillation tunes approach

the sum resonances: e.g. v, ~n/(2m).

We test if incoherent tunespreads of colliding bunches
also result in Landau anti-damping of coherent

beam-beam oscillations.

More details: D.V. Pestrikov, Nucl. Instr. and Meth.
A 588/3, p. 336, 2008.




Two identical, short, counter-moving relativistic electron
and positron bunches pass separate storage rings with
identical lattices and interact head-on at a single
interaction point (IP). We assume a zero dispersion
function at the IP.

Incoherent horizontal oscillations ot particles:

X = mcosw, P, = —py/J/Bsin.

Here, I = pJ/2 and ¢ (¥(0 + 27) = (0) + 27v,,) are the
action-phase variables, Il = 27 R, is the perimeter of the
closed orbit, s = Ry is the path along the closed orbit,

p = vMc is the reference particle momentum.




We use the model where:

Colliding bunches are very flat:

The bunches execute coherent oscillations only in the
horizontal plane:
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In the first approximation of the perturbation theory and
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obey (m > 0; slow modes are: v ~ mv, ~n — mv,):

dx dx

(£)

Z% —52(ZE)6 2 pm (ZU)’

with boundary conditions:

dpH(z1,0)

20(0
P (21,0) = 1, =+ o

dx (m+1)(2% — 0%2(0))

Dispersion equations of the problem:

pfni)(zl, o) = 0.

Here, £ = Ne?/(2mpce) (and e.g. B = 27€ < 1)




We look for unstable modes z; = ir with largest r.

Calculating increments, widths of stopbands of such
modes and their positions in v,, we take into account
self-consistent variations of the oscillation tunes and ot
B-functions by the beam-beam interactions (but, ignore
flip-flop).

Using simulations, we find that in our model

vo(3) = vy — Avy(0) (1 _ - “) |

X

Av,(0) = v, — 14 is the linear beam-beam tuneshift.




Line 1 — & = 0.05, line 2 — & = 0.005.




Example: dispersion equation: p{-/)(z;,00) =0

Im(Av_)/(m§)

Rez;=0, solid near 1/2, dashed — 1/4, £ = 0.05.
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Non-monochromatic bunches, £ = 0.05.
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Non-monochromatic, m = 2, £ = 0.05, 0.025, 0.01.




Non-monochromatic versus monochromatic
ve(x) = v, (dashed line; for all: £ = 0.05).
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Mode (-,1), weak Landau anti-damping.
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From monochromatic to non-monochromatic (-, 2).
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Near 1/4; Dashed — monochromatic.
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Positive octupole tuneshift dAv, /dI > 0; mode (-,2).
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Negative octupole tuneshift; mode (-,2).
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Simulation of the hour-glass reduction; mode (-,2).




Conclusions

The beam-beam tunespreads result in the instabilities of
coherent beam-beam oscillations in the regions of
betatron tunes v, where coherent oscillations of
monochromatic bunches would be stable —i.e. in

Landau anti-damping .

This Landau anti-damping is a generic feature for sum

resonance coherent instabilities.

Octupole tunespreads and hour-glass reductions

do not cancel Landau anti-damping.

However, coherent and/or incoherent oscillations

interference.




