Electron-positron collider VEPP-2000 commissioning

Yu.Shatunov on behalf of VEPP-2000 team,

ABDW April 14-16, 2008 Novosibirsk

OUTLINE

VEPP-2M VEPP-2000

- Physics at VEPP-2000
- Round beams a way to increase luminosity.
- VEPP-2000 systems
- 😼 First beam
- Round beam
- 🔆 Beam-beam study
- **& Conclusion**

VEPP-2M collider complex (1974-2000)

Overview of VEPP-2M results

Physical program at VEPP-2000

- 1. Precise measurement of the quantity $R=\sigma(e+e^{--})/\sigma(e+e^{--})/\sigma(e+e^{--})$
- 2. Study of hadronic channels: e+e⁻⁻ > 2h, 3h, 4h ..., h= π,K,η
- 3. Study of 'excited' vector mesons: ρ' , ρ'' , ω' , ϕ' ,..
- 4. CVC tests: comparison of $e+e^{--}$ > hadr. (T=1) cross section with τ -decay spectra
- 5. Study of nucleon-antinucleon pair production nucleon electromagnetic form factors, search for NNbar resonances, ..
- 6. Hadron production in 'radiative return' (ISR) processes
- 7. Two photon physics
- 8. Test of the QED high order processes 2->4,5

Increasing of Luminosity

✓ Geometric factor (gain=4)
 ✓ Beam-beam limit enhancement
 ✓ IBS for low energy? worth life time!

 $\xi_{x,y} \ge 0.1$

Round Colliding Beams Concept

Angular momentum conservation!

 $\mathbf{M}_{z} = \mathbf{x}'\mathbf{y} - \mathbf{x}\mathbf{y}'$

- **\succeq** Small and equal β-functions at IP:
- Equal beam emittances:
- Equal betatron tunes:

 $v_{x} = v_{y}$

 $\varepsilon_{x} = \varepsilon_{v}$

 $\beta_{\rm x} = \beta_{\rm v}$

Small and positive fractional tunes

(V.V.Danilov et al., EPAC'96, Barcelona, p.1149, (1996))

Vertical size dependence on beam- beam parameter ξ

"Weak-Strong" Beam-Beam Simulations

"Strong-Strong" Beam-Beam Simulations

Beam size (µm)

Practical Realization of Round Beams Options for VEPP-2000

Solenoid 13.0 T

Solenoid Test

VEPP-2000

VEPP-2000 Lattice

CO and Beam Sizes (solenoids "off")

Pick-up diagnostics

0.0621870, 0.0399673

Betatron tune (dimensionless)

Проброс ВЫКЛ 🔾 🔾 🔾

Round beam operation

★ E = 508 MeV

Orbit response matrices on dipole and quadrupole corrections + Singular Values Decomposition

Round beams (solenoid field 10 T)

positron beam

Round beam lattice

Revolution frequency, kHz

Measurement of damping time

Revolution frequency deviation, kHz

Dynamic aperture scan

Threshold current dependence on tune

Best luminosity run

<u>File</u> Опции

9	ST	42476.8	32	0
0	GENC	0.00		0
×	FLT	105.92		0
	L	1033.7	5 *10 ²⁸	0
	dL	24.64	*10 ²⁸	0
	IEAVG	39.57	мА	0
	IPAVG	41.13	мА	0
	IPRODAVG 365.86 мА ²			0

Conclusion

- VEPP-2000 is working
- 🖢 «Round beams» not a bad idea!
- Max. Lumi. achieved 1*10³¹ cm⁻²s⁻¹ at φmeson energy
- Potentially 2*10³¹ cm⁻²s⁻¹ possible at φ and 1.6*10³² cm⁻²s⁻¹ at 2 GeV
- More positrons required!