Upgrade plan of KEKB

Y. Ohnishi / KEK

CFA Beam dynamics workshop on high luminosity e+e- factories Budker Institute of Nuclear Physics, Novosibirsk April 14-16, 2008 Introduction KEK roadmap, Machine parameters

	n nuaumap		5 years					A. Suzul	
	2006 2	8008	2010	2012	2	2014	2016	2018	
•	J-PARC								
	constructio	on	experime	nt + up	ograde				
•	KEKB						12		
	experiment		upgrade	e	xperir	nent /			
•	PF/PF-AR					1	<u>~``</u>		
	experimen	t + u	pgrade			.0	•/		
•	LHC				\langle	Q~/			
	construction		experiment + upgrade			\checkmark			
•	R&Ds for Adv	vanc	ed Accelerato	or and	Detect	or Tech	nology		
1	ERL							4	
	C-ERL R&D		constructio	n	te	st expe	riment	V	
	ILC		PF	-ERL	R&D	const	ruction	experimen	
	ILC R&D								
				Construction (Site : TBD)					
	Detector R	2 N							

ime schedule is restricted.

Baseline is "HIGH current scheme".

Alternative is low beta+low emittance+crab waist scheme

Luminosity upgrade

Luminosity gain and upgrade items (preliminary)

3 years shutdow

	Item	Gain	Purpose
	beam pipe	x 1.5	high current, short bunch, electron cloud
	IR($\beta_{x/y}^*$ =20cm/3 mm)	x 1.5	small beam size at IP
	low emittance(12 nm) & $v_x \rightarrow 0.5$	x 1.3	mitigate nonlinear effects with beam-beam
,	crab crossing	x 2	mitigate nonlinear effects with beam-beam
	RF/infrastructure	x 3	high current
	DR/e ⁺ source	x 1.5	low β^* injection, improve e ⁺ injection
	charge switch	x ?	electron cloud, lower e ⁺ current

Projected Luminosity (preliminary)

Machine parameters

		LER	HER	
Energy	Е	3.5	8.0	GeV
Current	l _b	9.4	4.1	А
<pre>#particles/bunch</pre>	Ν	1.18x10 ¹¹	5.13x10 ¹⁰	
#bunches	n _b	50		
Emittance	ε _x	1	nm	
Coupling	ϵ_y/ϵ_x	0.	%	
Beta at IP	β_{x}^{\star}	2	cm	
	β_y^*	3		mm
Bunch length (0A)	σ_z	3	mm	
Crossing angle	θ_{x}	30→0 (cral	mrad	
Bean-beam	ξ _x	0.2		
	ξ _y	0.295		
Luminosity reduction	R_{L}	0.86		
Beam-beam	$R_{\xi x}$	0.0		
reduction	$R_{\xi y}$	1.		

Boost factor

 \bullet Toy MC results considering Δt resolution and geometrical acceptance.

 Geometrical acceptance is assumed to be same as the current Belle detector at KEKB.
K. Hara (Nagoya Univ.)

Synchrotron radiation loss

LER E (GeV)

10 M/M AC nower can be reduced when widdler off

Luminosity Estimation

Beam-beam simulations

Beam-beam simulation (Strong-Strong)

K. Ohmi

Lower emittance is preferable.

Shorter bunch length is preferable. If CSR is critical, 4 mm bunch length will be adopted (luminosity~16% low

Different damping time

$$P_{rad} = U_0 I = \frac{2T_0 EI}{\tau_x} \propto \frac{L}{\tau_x}$$

Longer damping time with keeping luminosity can save money.... But, shorter damping time is preferable.

At high current, we will not use LER wiggler to save a power consumption

LER: 47 to 84 msec

In the case of different damping time luminosity can be optimized by adjusting emittance. (otherwise, one beam blowups, the other shrinks in the model.)

 $\epsilon_x(\text{LER})/\epsilon_x(\text{HER}) = 12/13 \text{ nm}$, for instance

Optics

Arc lattice, Ground level of the tunnel, Dynamic aperture

Lattice parameters

Lattice parameters	LER	HER	
Horizontal emittance	12	12	nm
Beta function at IP	200/3		mm
Bunch length	3		mm
RF voltage	12	17.4	MV
Momentum compaction	1.9x10 ⁻⁴	1.4x10 ⁻⁴	
Synchrotron tune	-0.0231	-0.0157	

Flexibility of non-interleaved 2.5π arc cell

*Arc emittance is 24 nm in case LER wiggler is used.

Beam line distortion (vertical)

Measured ground level (quads.)

M. Masuzawa

n the model, magnets have the ertical offset measured at KEKB.

Coupling deteriorates to be 0.75 % only after the COD correction.

Dispersion correction recovers less

Orbit correction (model)

Dispersion correction

Sextupole offset is used to correct dispersions.

DX@SF

DY@SD

Sextupole offset is given by a magnet mover instead of a local bump. (or additional coils of the sextupole poles)

Local bump might k a problem of SR.

unit in m

blue: before dispersion correction red: after dispersion correction (also xy, beta correction)

Chromaticity correction

LER

54 sextupole pairs in LER (52 in HER)

*Local chromaticity correction will be adopted to HER.

Injection aperture

with e⁺ damping ring

w/o e⁺ damping ring

olue : no error

2, 0, 2,

ed : vertical orbit distortion with optics correction(xy, dispersion, beta)

Touschek lifetime

 $\Lambda n/n_{a}$

. Э Touschek lifetime is estimate by dynamic aperture.

N = 1.17×10^{11} (9.4 A/5018) $\epsilon_y / \epsilon_x = 0.5$ % (single beam)

 $\tau = 17 \text{ min.}$

(Dynamic effects & blowup: $\varepsilon_y/\varepsilon_x = 0.46/63 \text{ nm}$ Touschek lifetime becomes longer... ~150 min)

Luminosity lifetime: 81 min $(9.4 \text{ A}, 5x10^{35} \text{ cm}^{-2}\text{s}^{-1})$

no error

vertical orbit distortion with optics correction

Further low emittance in LER

SuperB-like beam can be possible if bending magnets are replaced to a longer magnet.

LER cell

LER cell

L bend = 0.9 m

ε_x: 6.8 nm α: 4.15E-4

L bend = 4.0 m

ε_x: 2.2 nm α: 3.52E-4 H. Koiso

Interaction Region IR Quadrupole magnets, Aperture, SR fan

QCS and IP

L(IP-QCSL) = 70 cmL(IP-QCSR) = 90 cm

QCS + compensation solenoids

N. Ohuchi

IR magnet layout (old)

IR magnet layout (new)

Dynamic beta and emittance

 $v_{x0} = 0.505$

S N

Beam size at IR quadrupoles

 $\beta_{x0}^{*} = 40 \text{ cm}$

Dynamic beta and dynamic emittance are included to estimate beam size. $(v_{x0} = .505 \xi_x = 0.27)$

 $5\sigma_x$ aperture at QC2: 100 mm for β_{x0} *=20 cm, 75 mm for β_{x0} *=40 cm

SR fan with $3\sigma_x$ beam size

Spread of SR fan is large in QC2(L).

QCS offset can make SR fan small.

→Two beams separation becomes sma

→ SR at IP is OK ?

Y. Funakoshi

Vacuum System Beam pipe, Bellows, TiN coating, ...

Beam pipe

* Copper beam pipe with ante-chamber for arc section

Low SR power density Low photoelectrons around beam Low beam impedance Expensive

Y. Suetsugu

Bellows with RF shield

Low beam impedance High thermal strength Applicable to a complex shap (ante-chambers,....) Less flexibility

The feasibility has been proved at KEKB.

Y. Suetsugu

Coherent synchrotron radiation

* Optimization of beam pipe shape

 We still continue CSR calculation. If the small aperture is not available, we will choose longer bunch(4 mm).

Crab cavity

Global crab crossing (similar to KEKB)

New crab cavity

PAC2005

K. Akai et a

Sufficient mode damping Reduction of HOM power

(1) Coaxial type

(2) Wave guide type

LOM damping: Coaxial coupler

LOM damping: Wave guide

Summary

- 5x10³⁵ cm⁻²s⁻¹ is a target luminosity for KEKB upgrade (High current scheme).
- $c_x=12$ nm optics can be feasible ($\epsilon_x \sim 2$ nm if bends are replaced).
- Design of the vacuum system is almost completed except for the IR chamber. CSR evaluation not yet.
- n IR design, there are still things to be fixed, especially, cure of SR fan, beam pipes.

Backup Slides

for KEKB upgrade

Luminosity lifetime

 $\sigma_{rad Bhabha} = 2.4 \text{x} 10^{-25} \text{ cm}^2$

 $L(cm^{-2}s^{-1})$

Definition of xy-coupling parameters and dispersion functions

In the normal coordinate (no xy-coupling space)

In the the physical coordinate (real space)

$$\begin{pmatrix} X \\ p_X \\ Y \\ p_Y \end{pmatrix} + \begin{pmatrix} \eta_X \\ \eta'_X \\ \eta'_Y \\ \eta'_Y \end{pmatrix} \delta = \begin{pmatrix} \mu & 0 & -R_4 & R_2 \\ 0 & \mu & R_3 & -R_1 \\ R_1 & R_2 & \mu & 0 \\ R_3 & R_4 & 0 & \mu \end{pmatrix} \begin{pmatrix} x \\ p_x \\ y \\ p_y \end{pmatrix}$$

 $\mu^2 + (R_1 R_4 - R_2 R_3) = 1$ $\delta = \Delta p/p.$

$$\begin{pmatrix} \eta_{X} \\ \eta'_{X} \\ \eta'_{Y} \\ \eta'_{Y} \end{pmatrix} = \begin{pmatrix} \mu & 0 & -R_{4} & R_{2} \\ 0 & \mu & R_{3} & -R_{1} \\ R_{1} & R_{2} & \mu & 0 \\ R_{3} & R_{4} & 0 & \mu \end{pmatrix} \begin{pmatrix} \eta_{x} \\ \eta'_{x} \\ \eta'_{y} \\ \eta'_{y} \end{pmatrix}$$

Beam-beam simulation (LER)

9000

8000

7000

6000 5000 4000 3000 2000 1000 0 -0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1 × 10

216.2 / 17

-0.1157E-08

0.1050E-05

8408

 χ^2/ndf

Mean

Sigma

Constant

 $\epsilon_{x} = 63 \text{ nm}$ $\beta_{x} = 19.4 \text{ mm}$ $\epsilon_{y} = 455 \text{ pm}$ $\beta_{y} = 2.4 \text{ mm}$

x (m)

Beam-beam simulation (HER)

x (m)

y (m)

Beam profile at l