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Abstract 
One of the main advantages of proposed by P. 

Raimondi “Crab Waist” collision scheme [1] is a strong 
suppression of betatron resonances excited by beam-beam 
interaction. Some qualitative explanations with numerical 
examples, describing beam-beam resonances for different 
collision schemes, were given in [2]. This paper can be 
considered as an “appendix” (additional illustration) to 
that one. We performed a number of full 2D betatron tune 
scans (beam-beam simulations) for different collision 
schemes, so one can easily see how the beam-beam 
resonances appear and disappear, depending on the 
colliding conditions. 

 

INTRODUCTION 
Performing a wide range tune scans we cannot avoid a 

number of serious simplifications. First of all, as our main 
goal was to investigate beam-beam resonances only, 
lattice was represented as simple as possible: just a linear 
2x2 block-diagonal matrix. We used the same diagonal 
noise matrix for all working points, providing that the 
generated emittances (without beam-beam) will be also 
the same. Of course, this approach is not “realistic”, as 
near the main coupling resonance the vertical emittance 
must grow. But we simply had no other choice, since all 
these distortions very much depend on the actual lattice, 
which we don’t know, especially taking into account a 
huge number of working points tested for each scan 
(about 40000). On the other hand, there is a clear 
advantage of such approach: we studied “pure” beam-
beam effects without any other nonlinearities, that makes 
the results clearer and easier to understand. 

One more important restriction is bound up with the 
fact that we performed “weak-strong” simulations. It 
implies that in the “bad” working points the numbers 
(luminosity, vertical blowup) are not correct. On the other 
hand, we don’t need exact numbers in the “bad” areas, we 
need them only in the “good” ones, where blowup is 
small, and “weak-strong” approach works well there. 
Besides, we need to know where the “good” and “bad” 
areas are located in the space of betatron tunes, and 
“weak-strong” simulations are quite relevant for this 
purpose. 

Also we should mention that Parasitic Crossings and 
beam tails (lifetime) were not taken into account. Our 
main concerns were the luminosity and beam core 
blowup, their dependence on the betatron tunes. The main 
goal was to illustrate how the resonances excited by 
beam-beam interaction depend on the colliding conditions 
(hour-glass, crossing angle, Piwinski angle, Crab Waist). 
So, the most informative are comparisons of different 
pictures (scans) and the numbers of maximum 

luminosities. These comparisons can be not exact in terms 
of numerical values, but we believe that qualitatively they 
are quite relevant. 

SET OF PARAMETERS 
For the basis we took the SuperB set of parameters of 

15.11.2006, electrons being the “strong” beam (7 GeV) 
and positrons – the “weak” one (4 GeV): 

 

Table 1: Nominal set of parameters 

Horizontal beta                 
β *

x (mm) 20 
Vertical beta                     

β *
y  (mm) 0.30 

Horizontal emittance        εx   (nm) 1.6 
Vertical emittance            εy   (nm) 0.004 
Bunch length                    σ z  (mm) 6 
Energy spread                   σ E 10-3 
Synchrotron tune (e+)      νs 0.02 
Damping decrements       αx,y 1.175·10-4 
Circumference                  C   (m) 2250 
Number of  bunches         Nb 1733 
Particles per bunch (e–)    Ns 3.52·1010 
Particles per bunch (e+)    Nw 6.16·1010 
Crossing angle (full)         θ  (mrad) 34 
Piwinski angle                  φ 18 
“Nominal” tune shifts       ξx, ξy 1.26, 3.09 
“Actual” tune shifts          ξx, ξy 0.004, 0.171 
Luminosity                        L 1036 

 
The definition of Piwinski angle and basic relations for 

beam-beam tune shifts are given below: 
                                                                                 

                                                                                    (1) 
 
 

 
 

Figure 1: Collision with a crossing angle. 
 

We performed 2D tune scans for the following cases: 
• Head-on collisions, different hour-glass: suppressed 

(σz<<βy), normal (σz=βy), and enhanced (σz>>βy). 
• Collisions with small Piwinski angle: from 0.2 to 1.2. 
• Collisions with large Piwinski angle and different βy: 

large (equal to σz) and small (equal to σz/φ), with and 
without Crab Waist. 

We tried to keep the nominal set of parameters as close as 
possible. However, for head-on and small Piwinski angle 

θ 
z 

4 σ x /θ    σ z·θ / 2 








=
2

θ
σ
σφ tg

x

z  
)1(

  
1

 
22 φε

ξ
φσσ

β
ξ

+⋅
∝

+⋅

⋅
∝

x
x

yx

y
y

NN

71

Proceedings of 40th ICFA ABDW 2008, Novosibirsk, Russia



collisions we had to change some parameters in order to 
obtain acceptable tune shifts. The idea was to keep the ξ 
value close to the limit in “good” areas, in this case the 
pictures of resonances will be the most clear and 
informative. It should be noted that collisions with 
changed parameters were not optimized for themselves: 
we made only minimal changes to get the “correct” ξ 
value. As we did not take into account PCs, the number of 
bunches was used only for the total luminosity 
calculation. We assumed the same Nb in all our 
simulations, that obviously was very optimistic for head-
on and small Piwinski angle collisions. The idea was to 
compare single bunch luminosities, but renormalized to 
the total luminosity as for SuperB. 

HEAD-ON AND HOUR-GLASS 
First of all, β*

y must be increased by a factor of 20 to 
match the bunch length. Also, we decided to have the 
same β*

x/β*
y ratio, the same bunch length and bunch 

current. If the emittances would be also the same, the 
“nominal” ξx,y would not change as well. But we need to 
reduce them to acceptable values, let’s say ξy=0.07. To 
achieve this, we increased both emittances by a factor of 
44. In this case ξx=0.0286, and the same crossing angle of 
34 mrad would result in Piwinski angle φ = 0.6. 
Simulation results for the “nominal” hour-glass (σz=βy) 
are shown on Fig. 2 (a,b,c). The “geographical map” 
colors are used there: red corresponds to the maximum 
luminosity, blue – to the minimum. 

 

 
      Figure 2a: σz=βy, Lmax = 2.45·1034 

 

  
Figure 2b: σz=βy, inverse vertical blowup 

 
  Figure 2c: σz=βy, inverse horizontal blowup 

 
The X-Y betatron resonances appear due to the vertical 

beam-beam kick’s dependence on the horizontal particle’s 
coordinate (amplitude modulation). The horizontal kick 
also depends on the vertical coordinate, but for the flat 
beams this dependence is much weaker. The luminosity 
plot combines both the vertical and horizontal blowups, 
but for high-order resonances it is better to look at the 
vertical blowup plot. Resonances L·νx + M·νy = K  (L, M 
– even numbers) are shown on Fig. 3, red lines – up to 4th 
order, green –  5th and 6th orders. All these resonances are 
clearly seen on Fig. 2. 

 

   
 

  Figure 3: Resonance lines up to 6th order. 
 
Hour-glass effect appears due to Collision Point (CP) 

longitudinal shift for particles with non-zero Z coordinate. 
Here CP is a point where a particle meets the center of the 
opposite bunch, see Fig. 4. 

 
                 Figure 4: Hour-glass effect 
 

Since βy has a minimum at the IP, ξy increases when CP 
is shifted. Synchro-betatron resonances appear due to the 
vertical betatron phase modulation at CP and amplitude 
modulation (ξy dependence on CP). Strength of these 
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resonances strongly depends on synchrotron tune: the 
larger – the worse. On the other hand, the vertical betatron 
phase averaging over the Interaction Region (IR) results 
in high-order vertical resonances suppression. Simulation 
results for suppressed hour-glass are shown on Fig.5 (a,b). 

 

 
Figure 5a: σz=βy/100, Lmax = 3.17·1034 

 

 
Figure 5b: σz=βy/100, inverse vertical blowup 
 

As we can see, luminosity increases due to geometrical 
factor and resonance lines become thin, since the synchro-
betatron satellites disappeared. On the other hand, more 
high-order resonances become visible, since the vertical 
betatron phase averaging disappears, so a particle feels a 
“solid” kick in a constant phase. Simulations for enhanced 
hour-glass effect are shown on Fig. 6 (a,b). 

 

 
   Figure 6a: σz=βy··33, Lmax = 1.62·1034

 

 
 

 
Figure 5b: σz=βy·3, inverse vertical blowup 
 

Here luminosity decreases due to geometrical factor, and 
synchro-betatron resonances become much stronger: more 
satellites, wider resonance lines. So, we cannot find any 
working point without strong vertical blowup. Taking into 
account the beam tails, situation looks even worse. 
Actually it means that the beam-beam tune shift exceeds 
the limit and must be decreased. 
 

SMALL PIWINSKI ANGLE 
In collisions with a crossing angle the horizontal 

coordinate of CP (in the strong bunch’s coordinate frame) 
depends on its longitudinal coordinate, see Fig. 6. As a 
result we obtain amplitude modulation of both horizontal 
and vertical beam-beam kicks by the particle’s 
synchrotron oscillations, thus exciting strong synchro-
betatron resonances. One more important consequence of 
the crossing angle: it breaks the X-symmetry, so the 
betatron resonances L·νx + M·νy= K with odd L numbers 
appear. In particular, low-order resonances νx ± 2νy = k 
become very strong. 

  

 
 

       Figure 6: Collision with a crossing angle. 
 

When increasing the crossing angle, luminosity and 
actual tune shifts decrease due to geometrical factor. 
Betatron resonances νx ± 2νy = k become stronger since 
they need X-asymmetry. On the other hand, “old” 
betatron resonances (as for head-on) become weaker since 
the horizontal coordinate of CP (in the strong bunch’s 
coordinate frame) now depends more on the particle’s 
longitudinal coordinate and less on its horizontal betatron 
coordinate. See the simulation results on Fig. 7 (a, b, c). 
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Figure 7a: φ = 0.2,   Lmax = 2.38·1034                                 
 

 
Figure 7b: φ = 0.6,   Lmax = 2.05·1034 

 

 

Figure 7c: φ = 1.2,   Lmax = 1.61·1034 

 

LARGE PIWINSKI ANGLE 
In general, it looks like the larger Piwinski angle – the 

worse, but for φ >>1 we need to change the concept of 
CP, and this makes a difference. Indeed, for large 
horizontal separations (in units of σx) the vertical beam-
beam kick drops as 1/R2, while the horizontal one drops 
as 1/R. It means that for the vertical kick the center of the 
opposite bunch becomes not so important and can be not 
seen at all by the particles with large longitudinal 
displacements due to large horizontal separation. Thus CP 
has to be defined in a different way: it is the point  where 
a test particle crosses the longitudinal axis of the opposite 
beam. In particular it means that the X-coordinate of CP 
in the “strong” frame is always zero, by the definition. 

 
        Figure 8: Collision with large Piwinski angle. 
 

Now we simply return back to small emittances and βx, 
as specified in Table 1, thus obtaining Piwinski angle 
φ=18. For the beginning we did not change βy and keep it 
equal to the bunch length – just to see the effect of the 
new CP concept. However, we decreased the bunch 
current by a factor of ten in order to keep acceptable tune 
shifts. Since the distance between IP and CP is negligible 
as compared to βy, the vertical beam-beam kick’s 
dependence on the particle’s X-coordinate becomes very 
small. This makes X-Y betatron resonances much weaker 
than even in the ordinary head-on collisions, see Fig. 9. 

 

 
 Figure 9:  Luminosity, φ =18,  βy = σz 

 

  The next step is decreasing the βy to its “nominal” 
value (see Table 1), to fit the overlapping area. Since the 
shift of CP due to X-betatron oscillations becomes now 
comparable with βy,  the vertical betatron phase at CP and 

  

 
  Figure 10: βy = 0.3 mm, Lmax = 1.6·1035 
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ξy are strongly modulated, thus exciting X-Y betatron 
resonances again. Actually, this is rather similar to 
synchro-betatron resonances exited by the hour-glass 
effect in head-on collisions. Simulation results are shown 
on Fig. 10. Here all the parameters are the same as listed 
in Table 1, except the bunch current which was reduced 
by a factor of 2.5 to get acceptable tune shifts (without 
Crab Waist). If we compare Figures 7b and 10, they look 
rather similar, but there are some differences. In the case 
of large φ the horizontal synchro-betatron resonances are 
enhanced, while the vertical ones are suppressed [4], as 
well as horizontal betatron ones. As for X-Y betatron 
resonances, their strength and width also changed, since 
the sources are different. For small φ  it is an amplitude 
modulation of the vertical kick, coming from its 
dependence on X-coordinate. For large φ the main source 
is the Y-betatron phase modulation, plus amplitude 
modulation coming from ξy dependence on X-coordinate 
(due to hour-glass). 

Finally, we introduce the Crab Waist (CW), which kills 
the vertical betatron phase modulation.  According  to  [2] 

 

 
                  Figure 11: Crab Waist scheme. 
 

the transport matrix M (see Fig. 11) from the entrance of 
the first sextupole (point 1) to the CP (point 2), vertical 
betatron motion only, can be written as: 
 

(2) 
 
where the first matrix corresponds to the drift space from 
IP to CP, L being the drift length, the last matrix 
corresponds to the sextupole, considered here as a thin 
linear lens, and in the middle is the unperturbed matrix m  
from the sextupole location to the IP. For this unperturbed 
matrix we have m22 = 0, since α y = 0 at the IP and 

� �
y = π /2. As a result we get M22 = 0 as well. On the other hand, 

considering the “new” lattice (sextupoles included) we 
can write the standard formula for M22: 
 

(3) 
 

where β1y and α1y are the beta- and alpha-functions at the 
CP. Since it is the waist at the CP, α1y must be equal to 
zero, so we get cos(

� �
1y) = 0, resulting in 

� �
1y = π /2, that 

is exactly what we wanted. In the other words, the vertical 

betatron phase advance from the first sextupole to CP and 
then from CP to the second sextupole remains to be π /2 
for all the particles independently on their X-coordinate. 
This feature allows increasing the beam-beam tune shift 
by a factor of about 2.5! Thus we return to the nominal 
bunch current (see Table 1). Simulation results for the 
nominal waist rotation are shown on Fig. 12. 
 

  
     Figure 12:  CW = 1, Lmax = 1.03·1036 

 
Now let us consider an amplitude modulation of the 

vertical beam-beam kick caused by the βy modulation at 
the CP. The vertical tune shift depends on both “weak” 
and “strong” betas, as follows: 

 
                                             (4) 

 
 

Here in the numerator we have “weak” βy, and in the 
denominator – “strong” beam size. Without Crab Waist 
both betas at the CP are actually the same, the difference 
is negligible when θ  << 1. It means that ξy scales as 
(βys)

1/2. In the CW scheme βyw = const at the CP, so ξy 
scales as (βys)

–1/2, that is inverse dependence of the one 
without CW, see Fig. 13. This means that if the waist 
rotation is smaller than the nominal value, the amplitude 
modulation should decrease while some phase modulation 
appears again. From here we can conclude that there is 
some optimum waist rotation angle, as a compromise 
between amplitude and phase modulations, which should 
depend on the other parameters (ξ, φ, etc.). Usually the 
optimum lies somewhere in the range of 0.6 to 0.8 of the 
nominal value. 

 
Figure 13: “weak” and “strong” betas at the CP with CW. 
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achieved by increasing βys by a factor of 100 and 
decreasing the “strong” vertical emittance εys by the same 
factor, so the vertical beam size was not changed. In these 
conditions the optimum waist rotation must be shifted to 
the nominal value, and it was completely confirmed by 
our simulations. These rather specific simulations, of 
course, were not realistic, as the “weak” and “strong” 
beam parameters were very different. The only goal was 
to demonstrate how the X-Y betatron resonances are 
suppressed by the Crab Waist. The luminosity tune scans 
for these conditions without and with Crab Waist are 
shown on Fig. 14 (a, b). 

 

 
Figure 14a: CW=0, without βys modulations. 
 

 
Figure 14b: CW=1, without βys modulations. 
 

As one can see, without Crab Waist removing the βys 
modulations did not help at all, but with Crab Waist it 
results in actual vanishing of all X-Y resonances. We still 
can see the resonances νx ± 2νy = k, but they became 
rather weak (note the color!). Though they look wide, it is 
simply due to a very large tune shift: ξy = 0.17. Also, this 
is the reason of “shifting” the resonances down. 

Finally, we performed a tune scan for the nominal set of 
parameters with the optimal waist rotation, see Fig. 15. 
The optimal CW value can be recognized even clearer 
when performing the beam tails simulation [2]. As for the 
luminosity scan, the resonances νx ± 2νy = k become 
more emphasized for CW=0.8 (Fig. 15) as compared to 
CW=1 (Fig. 12), but on the other hand the “good” areas 

become larger for CW=0.8, especially the ones close to 
half-integer resonances. 

 

  
    Figure 15: CW=0.8, Lmax = 1.05·1036 

CONCLUSIONS 
We performed a number of beam-beam simulations for 

different collision schemes. The main sources of beam-
beam resonances which affect the equilibrium particles 
distribution were recognized, and the luminosity tune 
scans allowed their clear visualization and identification.  

The collision scheme with large Piwinski angle and 
Crab Waist looks the most promising, since it makes the 
X-Y modulations much smaller as compared to head-on 
collision scheme, thus the beam-beam limit ξy can be 
significantly increased, that was confirmed by the recent 
experimental results obtained on DAFNE [5].  
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