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Abstract

We discuss effects of Landau damping on the stability of
coherent oscillations of short identical colliding bunches.
Near the sum-type resonances n/(2m), where n and m
are integers, these oscillations are unstable. Compar-
ing the stopbands calculated for monochromatic and non-
monochromatic bunches, we have found that the beam-
beam tunespreads increase the widths of the stopbands of
coherent modes thus, resulting in Landau anti-damping of
coherent beam-beam oscillations. The tunesperads due to
octupole fields do not eliminate Landau anti-damping.

INTRODUCTION

Periodic perturbations of the particle oscillations at the
interaction point (IP) of a collider by space charge forces
of the counter-moving colliding bunches result in numer-
ous resonant instabilities which can limit the operational
performance of the collider. In particular, such beam-beam
perturbations can result in the resonant instabilities of co-
herent oscillations of the colliding bunches. In the sim-
plest case, if ν1,2 are the tunes of the betatron oscillations
of particles in the colliding bunches 1 and 2, coherent os-
cillations of these bunches become unstable provided that
the oscillation tunes approach the sum-type resonance re-
gion [1] m1ν1 + m2ν2 = n. Here, m1,2 and n are pos-
itive integers. Nonlinear dependencies of the beam-beam
forces on particle coordinates in the bunches produce the
tuneshifts and the tunespreads of the particle oscillations.
Therefore, some Landau damping of unstable modes could
be expected. However, a qualitative study made in Ref.[2]
has shown that the beam-beam tunespread is not sufficient
to suppress the beam-beam coherent instability and that
near the resonant tunes still can exist unstable coherent
beam-beam modes. Using a different approach, this result
was confirmed numerically for the beam-beam π–modes in
Ref.[3].

Descriptions of such instabilities are usually compli-
cated by a generic self-consistency of the beam-beam in-
teractions. We simplify calculations of Landau damp-
ing effects of self-consistent coherent oscillations of short
identical colliding bunches using the model described in
Refs.[1, 2, 3], or in Ref.[4]. Using the technique developed
in Refs.[5] and [6], we calculate the stopbands for coherent
oscillations of colliding bunches taking into account and/or
ignoring the beam-beam and others tunespreads. For the
last case, we call colliding bunches as the monochromatic
ones. Comparing results of such calculations, we find out
that Landau damping due to the nonlinearity of the beam-
beam forces, generally, increases the widths of the stop-

bands of coherent beam-beam modes. It also can change
positions of the stopbands of unstable modes relative to
the values of the resonant tunes. These features mean
that together with the damping of unstable modes of the
monochromatic colliding bunches the tunespreads result in
the instabilities for the regions of tunes where the modes of
the monochromatic bunches were stable – i.e. in the Lan-
dau anti-damping. Such an anti-damping is a specific fea-
ture for resonant instabilities of coherent oscillations near
the sum-type coupling resonances [7].

THE MODEL

We consider collisions of two identical short counter-
moving relativistic electron and positron bunches, which
move in separate storage rings and interact head-on at a
single interaction point (IP). In our calculations we as-
sume a zero dispersion function at the IP. Incoherent e.g.
the horizontal oscillations of particles in the bunches are
described using x =

√
Jβ cosψ and px = px′/R0 =

−p
√

J/β sin ψ. Here, I = pJ/2 and ψ (ψ(θ + 2π) =
ψ(θ) + 2πνx) are the action-phase variables of the unper-
turbed incoherent oscillations, Π = 2πR0 is the perimeter
of the closed orbit, s = R0θ is the path along the closed
orbit, primes mean d/dθ, p = γMc is the value of the mo-
mentum of the reference particle, β denotes the value of
the β-functions of the horizontal oscillations at the center
of IP.

Coherent oscillations of bunches are described using
harmonics of their distribution functions f in phases
ψ. We use a special model, where the bunches
have very flat unperturbed distribution functions so that
f (1,2)(Iy , x, ψ, θ) = δ(Iy)f (1,2)(x, ψ, θ),

f (1,2)(x, ψ, θ) =
e−x

pε
+

∞∑

m=−∞
f (1,2)

m (x, θ)eimψ , (1)

(y marks the values relating to the vertical oscillations, I =
xpε, ε is the horizontal bunch emittance) and where the
bunches execute coherent oscillations only in the horizontal
plane. Assuming also that the bunches move in the rings
with identical lattices, pε|f (1,2)

m | � 1, and neglecting in the
linearized Vlasov equations for f

(1,2)
m the fast-oscillating

terms, we find that the combinations

f (±)
m = f (1)

m ± f (2)
m

= e−xp(±)
m (x)

xm/2

im

∞∑

n=−∞

e−i(ν+n)θ

ν + n − mνx(x)

describe normal modes of identical colliding bunches [8].
Since the functions f

(1,2)
m are linear combinations of the
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modes f
(±)
m , coherent oscillations of identical colliding

bunches are stable only in the regions, where both modes
f

(+)
m and f

(−)
m are stable. For small values of the beam-

beam parameter ξ = Ne2/(2πpcε) (e.g. B = 2πξ < 1)
and near the resonances νx = n/(2m), we can neglect in

equations for f
(±)
m the contributions of non-diagonal in |m|

modes. Resulting equations for p
(±)
m (z1, x) read (more de-

tails in Ref.[6], m > 0)

d

dx

(

xm+1 dp
(±)
m (x)
dx

)

= ±e−xxmV (x) p(±)
m (x). (2)

These equations should be solved with the boundary
conditions p

(±)
m (z1, 0) = 1, and dp

(±)
m (z1, 0)/dx =

±V (0)/(m + 1). The dispersion equations of the problem
read

p(±)
m (z1,∞) = 0. (3)

Here, V (x) = 2δ(x)/(z2
1 − δ2(x)) (Imz1 > 0), and

z1 =
1

mξ

(
ν − n

2

)
, δ(x) =

1
ξ

(
νx(x) − n

2m

)
, (4)

n is the azimuthal number of the resonance harmonic.

RESULTS

Near the resonances νx � n/(2m) Eqs.(2) and (3) al-
ways have solutions with the eigenvalues Re(z1) = 0 and

Im(z1) �= 0 [2]. Since p
(±)
m (z1,∞) are functions of z2

1 ,
these solutions describe unstable modes. The values of the
increments of unstable modes as well as the widths of rel-
evant stopbands and their positions in νx are found solving
Eqs.(2) and (3) numerically. In these calculations we also
took into account self-consistent variations of the oscilla-
tion tunes and of β-functions by the beam-beam interac-
tions: cosμ0 = cosμx + B sinμx, β sin μx = β0 sin μ0,
where μ = 2πν, the subscript 0 marks bare values. Below,
we neglect possible flip-flop spitting of the betatron func-
tions. Using simulations, we have found that in our model
the tunes depend on x according to

νx(x) = νx − Δνx(0)
(

1 − 1 − e−x

x

)
, (5)

where Δνx(0) = νx−ν0 is the linear beam-beam tuneshift
(e.g. in Fig. 1) Calculating increments for the modes (±)
with 1 ≤ m ≤ 5 and 1 ≤ n ≤ 4, we find the stopband de-
picted in Fig. 2. Although only the segment 0 ≤ νx ≤ 1/2
is shown in Fig. 2, the stopbands for higher, or lower val-
ues of νx appear periodically with a period in νx of 1/2.
For dipole oscillations m = 1 we have found no roots of
the dispersion equation (3) for 0 ≤ νx ≤ 1/2. This result
means that only (−) dipole mode has the stopband below
the resonance νx = 1/2. The stopband for the mode (−, 2)
starts slightly below the resonance νx = 1/4. The lower
ends of all other found stopbands are found to be close to
the corresponding resonant tunes νx = n/(2m). Numer-
ical values of the maximum increments and of the widths
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Figure 1: Dependence of the linear beam-beam tune shift
on the bare tune (ν0); line 1 – ξ = 0.05, line 2 – ξ = 0.005.
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Figure 2: Dependencies of the increments of the coherent
beam-beam modes on the tune of the horizontal incoherent
betatron oscillations (νx). Modes 1 ≤ m ≤ 5, arrows show
positions of stopbands near particular resonances, wider
curves to the right from the resonances νx = n/(2m) de-
pict the increments of the modes (+), ξ = 0.05.

of the stopbands for modes (−) and 1 ≤ m ≤ 3 in Fig. 2
are in general agreement with similar results reported in
Ref.[3] and obtained using a different approach. We note
that the values of the maximum increments for the modes
m ≥ 3 are a bit smaller in the region νx < 1/4 than that
above νx = 1/4. The maximum increments of the modes
near the resonances νx = 1/(2m) tend to zero, when νx

approaches the border value

(νx)min =
1
2π

arccos
1 − B2

1 + B2
. (6)

This fact is in a general agreement with experimental ob-
servations of the beam-beam instabilities in the electron-
positron colliders. Although it is not shown here, a de-
crease in ξ results in decreases in the values of the mode
increments (Imν) and in the narrowing of the widths of the
stopbands in νx. However, the ratios Imν/ξ and of these
widths to ξ remain the same.

Outside the spectrum of incoherent oscillations (e.g.
z2
1 > δ2(0)) Eqs.(2) and (3) may have solutions with
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Re(z1) �= 0 and Im(z1) = 0. To avoid the mode inter-
ference, coherent tuneshifts of such stable solutions should
not enter the stopbands of unstable modes.

To figure out effects of Landau damping on the sta-
bility of coherent beam-beam oscillations we compared
the stopbands calculated for monochromatic and non-
monochromatic bunches. For monochromatic bunches the
roots of the dispersion equations corresponding to the
largest increments are calculated using ([6]) z2

1 = δ2 ±
2Λmδ, where the sign + is taken for the modes (−) and

Λm =
4

m (m + 2)
1

(
1 + 1

m+1

)m+1 . (7)

For the dipole mode (−) Landau damping results only
in minor changes of the stopband of the monochromatic
bunches (Fig. 3). The maximum values of the increments
almost coincide, Landau damping suppress the instability
within a narrow band A′A and decreases the oscillation
increments within the segment AB. Within the segment
BC the beam-beam tunespread slightly increases the in-
crements of unstable modes hence, resulting in some Lan-
dau anti-damping. Stronger Landau anti-damping indi-
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Figure 3: Dependence of the increment of the dipole mode
(−) on the tune of the horizontal incoherent oscillations νx.
Solid line – Landau damped coherent oscillations, dashed
line – monochromatic bunches, ξ = 0.05.

cate the stopbands of the modes with higher betatron mul-
tipole numbers (m ≥ 2, e.g. in Fig. 4 and 5). For such
modes, the beam-beam tunespread although decreases the
values of the maximum increments, moves the lower bor-
der of the stopbands of the modes (−) towards the reso-
nant tune n/(2m) and substantially increases the widths
of the stopbands. Except for the case m = 2, the stop-
bands of the multipole modes (±) are placed above the res-
onant tunes almost entirely. Hence, the beam-beam tune-
spread suppressing the modes of the monochromatic collid-
ing bunches opens new wide regions of the tunes νx where
the oscillations become unstable. The described Landau
anti-damping of the coherent oscillations of the colliding
bunches is a generic phenomenon for the coherent beam-
beam interactions. These instabilities occur due to the cou-
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Figure 4: The stopbands of coherent oscillations near the
resonance 1/4. Solid line – Landau damped coherent oscil-
lations, dashed line – monochromatic bunches, the symbols
(±) mark the curves for modes (±), ξ = 0.05.
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Figure 5: Same as in Fig. 4, but near the resonance 1/6.

pling of the modes m and −m near the sum-type resonance
m(ν(1)

x +ν
(2)
x ) = 2mνx = n. According to general proper-

ties of such instabilities [7] any damping can stabilize cou-
pled coherent modes only in the case, when both coupled
modes are damped sufficiently strongly. Otherwise, the os-
cillations become unstable.

Replacing νx by νx + ax, we can also inspect some ef-
fects of the octupole lattice non-linearity on the stability
of coherent beam-beam oscillations. According to data de-
picted in Figs. 6 and 7, the octupole fields do not cancel the
described Landau anti-damping. However, it can decrease
the strength of the instability provided that the sign of the
non-linearity is correct.

Additional suppression of the strength of the coher-
ent beam-beam instability can occur in collisions of long
bunches due to hour-glass effect [9]. In the simplest case
and provided that the disruption parameter of the bunches
4πξσs/β is small, the stopbands of the betatron modes of
the bunches with the lengths σs comparable to β can be
calculated using Eqs.(2) and (3) after a reduction in Eq.(2)
of the function V (x) by the suppressing factor times. Ac-
cording to data depicted in Fig. 8, the hour-glass suppres-
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Figure 6: Modifications of the stopband of the (−) mode
near νx = 1/4 due to octupoles. Solid lines right to left
a/ξ = 0.1, 0.2, 0.3, 0.4, 0.8; dashed line a = 0, open cir-
cles – the stopband for monochromatic bunches, ξ = 0.05.
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Figure 7: Same as in Fig. 6, but top to bottom a/ξ =
−0.1,−0.3,−0.6,−1; dashed line: a = 0.

sion decreases the increments of unstable modes and the
width of the stopband, but does not eliminate Landau anti-
damping of the modes.

CONCLUSIONS

Using the simplifying model, we have studied the influ-
ence of tunespreads on the stability of coherent oscillations
of short, identical colliding e+e− bunches. Comparing the
spectra of coherent oscillations which are calculated tak-
ing into account and/or ignoring the tunespreads we have
found out the Landau anti-damping of coherent oscillations
of colliding bunches. Namely, together with the damping
of unstable modes of the monochromatic colliding bunches
the tunespreads result in the instability of coherent oscilla-
tions in the regions of betatron tunes νx where coherent os-
cillations of monochromatic bunches were stable. Effects
of this anti-damping increase with an increase in the value
of the betatron multipole number m. It is almost negligi-
ble for the dipole modes, but for the modes with m ≥ 2
the calculations ignoring the beam-beam tunespread result
in strong underestimation of the widths of the stopbands
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Figure 8: Modifications of the stopband of the (−) mode
near νx = 1/4 due to hour-glass like suppression. The
figures above the curves give the values of the suppression
factors, ξ = 0.05.

of coherent oscillations of the colliding bunches as well
as in wrong positions of these stopbands relative the res-
onant values of the tunes νx. Generally, effects of the tune-
spreads decrease the maximum values of the oscillation in-
crements as compared to those calculated for monochro-
matic bunches. Octupole fields do not cancel Landau anti-
damping, but can decrease increments of unstable modes.
Initial estimations also show, that the hour-glass reduc-
tions do not eliminate Landau anti-damping of the coherent
beam-beam modes.

We simplified our half-analytic calculations ignoring
possible effects of incoherent beam-beam resonances on
the stability of collective beam-beam modes assuming that
only small amount of the bunch particles are captured in
the resonance buckets. If the incoherent resonances are
strong and/or are wide enough in νx, the described calcu-
lations may predict the results which are not reliable (see,
e.g. in Ref.[10]). In such cases, the stability of collective
beam-beam modes should be studied using numerical sim-
ulations.
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