

... for a brighter future

29th International FEL Conference August 26-31, BINP

Novosibirsk, Russia

Kwang-Je Kim, ANL Sven Reiche, UCLA Yuri Shvyd'ko, ANL

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

FELs for λ*<1-Å Wavelengths*

- **High-gain FEL amplifier, SASE or HGHG, as an option for for future light source providing an enormous jump in peak brightness, became realistic due to advance in gun-linac technology**
	- I_P~ several kA, ε_xn~ 1 mm-mr beams
	- LCLS, European X-FEL, SCSS, Fermi, Arc-en-Ciel,..
- Electron beams from guns for another option for FLS, the ERLs, **promise to be extreme low-emittance, high average power**
	- I_P~ 4-12 A, ε_xʰ~ 0.1 mm-mr
	- Rep rates upto 1.3 Gz

We discuss an X-ray FEL *Oscillator* **(XFEL-O) for** ^λ **<1-Å based on high energy ERL beams**

– High peak as well as average brightness & narrow bandwidth

Principles of an FEL Oscillator

■ Small signal gain G= ∆P_{opt}/P_{opt}

- $-$ Start-up: (1+G $_0$) R $_1$ R $_2$ >1 \qquad (R $_1$ & R $_2$: mirror reflectivity)
- $-$ Saturation: (1+G $_{\rm sat}$) R₁ R₂ =1

Synchronism

Spacing between electron bunches=2L/n (L: length of the cavity)

Feedback-Enhanced x-rays

- X-ray FEL Oscillator (XFEL-O) using Bragg reflector was first **proposed by Colella and Lucio at a BNL workshop in 1984.**
- **(This was also when high-gain FEL and SASE was proposal by Bonifacio, Narducci and Pelegrini , independently from Saldin's earlier work)**
- \mathbb{R}^3 **Feedback-enhanced x-rays using electron beams optimized for high-gain amplifiers have been studied recently:**
	- Electron outcoupling scheme by Adams and Materlik (1996)
	- Regenerative amplifier using LCLS beam (Huang and Ruth, 2006)

Main Issues for ERL-based XFEL-O

Electron beams of suitable characteristics

 $-$ Production and recirculation of high quality beams

FEL dynamics

- Sufficient initial gain
- Coupling of spontaneous emission to coherent mode
- $-$ Beam degradation consistent with recirculation path

High reflectivity optical cavity

- Crystals in backscattering configuration
- $-$ Focusing elements
- Outcoupling schemes

Cornell 5 GeV ERL Parameter scaled to 7 **GeV APS II:** G. Hoffstaetter, FLS 2006 Workshop, DESY

With gun optimization, the charge can be increased to 60 pC

> **I.V. Bazarov & C.K. Sinclair, PRSTAB,8, 0342002 (2005)**

Preliminary layout view of an ERL upgrade to CHESS in the present CESR tunnel. A new tunnel with a return loop will be added to CESR. Electrons are injected into superconducting cavities at (I) and accelerated to 2.5 GeV in the first half of the main linac. then to 5 GeV in the second half. The green lines show 18 possible beamline locations. Electrons travel around the CESR magnets clockwise and re-enter the linac out of phase. Their energy is extracted and the spent electrons are then sent to the dump (D).

FEL Beam Dynamics

■ Gain calculations

- Analytic formula for low signal gain including diffraction and electron beam profile
- Steady state GENISIS simulation for general intra-cavity power to determine saturation power

Time-dependent oscillator simulation by GENO

- Extend OPC by adding mirror bandwidth (Reiche)
- Necessary to establish the growth from spontaneous emission

■ Reduce the CPU time by

- Modeling a short window (25 fs)
- Tracking a single frequency component for radiation wavefront since other components are outside the crystal bandpass
- $-$ About 2 hr for one pass

Saturation: As circulating power increases the gain drops and reach steady state when gain=loss

E=7GeV, λ=1Å $Q=19$ pC (Ip=3.8A), N_u=3000 Mirror reflectivity=90% Saturation power=19 MW

 $E=7$ GeV, $λ=1Å$ $Q=40$ pC (lp=8 A), N_u=3000 Mirror reflectivity=80% Saturation power=21MW

KJK, FEL07, BINP August 28, 2007 August 28, 2007

Examples of Steady State Calculation

$$
\sigma_{\tau}
$$
=2 ps, σ_{γ} =1.37, ε_{xn} =0.82 10⁻⁷m
 Z_{R} = β^* =10~12 m

Results of GENO Simulation

Constant electron focusing (β**ave=5.6 m)**

- Steady state gain is ~40% for low charge case (19 pC)
- Exponential growth did not occur-- probably coupling of spontaneous emission to coherent mode is too small- \sim

 No focusing, beam waist at the undulator center (β***~10 m) and mode Rayleigh length ~** β*****

- Smaller gain, but a good coupling to the coherent mode
- High charge case (60 pC): exponential gain and saturation observed
- With 19 pC, growth is not strong—factor 6 over spontaneous after 40 passes (as of 6 AM this morning!)
- Further optimization of electron and mode parameters will be necessary

Desired Optics for the X-FEL Oscillator (Y. Shvyd'ko)

■ Reflectivity R₁ x R₂ >90-80%

– "Pure" diamond or sapphire

Transmissivity T ~5%

 $-$ Thin crystal, accompanying diffraction in near BS

Focusing elements

- $-$ Curving crystal can affect reflectivity even for R~50m $\,$
- $-$ Grazing incidence mirrors or compound reflective lenses

■ Heat loading is OK to 1 MHz, may be up to 100Mz

Cooling AL2O3 to 40 degree

Options for XFEL-O Cavities (Y. Shvyd'ko)

 $\mathrm{Al}_2\mathrm{O}_3$ xAl₂O₃ @14.3 keV $R_T = 0.87$, $G_{sat} = 15\%$, T=3%

CxCxmirror @12.4 keV

RT=0.91, G_{sat} =10%, T=4%

 Al_2O_3 x Al_2O_3 x SiO_2 @ 14.4125 keV RT=0.82, G_{sat} =22 %, T=4%

Energy Acceptance of the Recirculation-Pass for APS-ERL

- **Genesis simulation shows that the rms energy spead increases from 0.02% to 0.05% after the FEL interaction**
- **The ERL return pass can accommodate 0.05% energy spread**

Photon Performance of XFEL-O

- **Wavelength: 1-Å or shorter,** εγ**=12.4 keV or higher**
- **Full transverse coherence**
- Full temporal coherence in 1 ps duration
	- \Box Δ v/v= 0.3 10⁻⁶ ; h Δ v=4 meV
- **109 photons (~ 1** μ**J) /pulse**
	- $-$ Peak spectral brightness~LCLS
- Rep rate: 1 MHz or higher, limited by crystal heat load, **100MHz?**
	- $-$ Average brightness 10 27 (\rightarrow 10 29) #photons/(mm-mr) 2 (0.1%BW)
	- $-$ 10 $^{\rm 3}$ -10 $^{\rm 5}$ times higher than ERL based undulator source

Science Drivers for XFEL-O

- Inelastic x-ray scattering (IXS) and nuclear resonant **scattering (NRS) are flux limited experiments!** *Need more spectral flux in a meV bandwidth!* **.**
- **Undulators at storage rings generate radiation with [≈] 100−200 eV bandwidth. Only [≈] 10−⁵ is used, the rest is filtered out by meV-monochromators.**

Presently @ APS: \approx **5** \times **10⁹ photons/s/meV (14.4 keV)**

■ **XFEL-O** is a perfect x-ray source for:

- high-energy-resolution spectroscopy (meV IXS, neV NRS, etc.), and
- imaging requiring large coherent volumes.
- $−\;$ Expected with <code>XFEL-O</code> ≈ 10 15 photons/s/meV (14.4 keV) with 10 7 Hz repetition rate.

Concluding Remarks

- **XFEL-O appears to be feasible with beams expected from future ERLs**
- It is a promising and powerful addition to ERL **capabilities**
- Application areas: nuclear resonance scattering, **coherent imaging, inelastic scattering,…**
- This is initial exploration with much room for further **optimization.**

