

... for a brighter future

1-Å FEL Oscillator with ERL Beams

29th International FEL Conference August 26-31, BINP

Novosibirsk, Russia

Kwang-Je Kim, ANL Sven Reiche, UCLA Yuri Shvyd'ko, ANL

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

FELs for λ<1-Å Wavelengths

- High-gain FEL amplifier, SASE or HGHG, as an option for future light source providing an enormous jump in peak brightness, became realistic due to advance in gun-linac technology
 - I_P ~ several kA, ε_x^n ~ 1 mm-mr beams
 - LCLS, European X-FEL, SCSS, Fermi, Arc-en-Ciel,...
- Electron beams from guns for another option for FLS, the ERLs, promise to be extreme low-emittance, high average power
 - I_{P} 4-12 A, ε_{x}^{n} 0.1 mm-mr
 - Rep rates upto 1.3 Gz
- We discuss an X-ray FEL *Oscillator* (XFEL-O) for λ <1-Å based on high energy ERL beams
 - High peak as well as average brightness & narrow bandwidth

Principles of an FEL Oscillator

Small signal gain G= ∆P_{opt}/P_{opt}

- Start-up: $(1+G_0)$ R₁ R₂ >1 $(R_1 \& R_2 : mirror reflectivity)$
- Saturation: $(1+G_{sat}) R_1 R_2 = 1$

Synchronism

Spacing between electron bunches=2L/n (L: length of the cavity)

Feedback-Enhanced x-rays

- X-ray FEL Oscillator (XFEL-O) using Bragg reflector was first proposed by Colella and Lucio at a BNL workshop in 1984.
- (This was also when high-gain FEL and SASE was proposal by Bonifacio, Narducci and Pelegrini, independently from Saldin's earlier work)
- Feedback-enhanced x-rays using electron beams optimized for high-gain amplifiers have been studied recently:
 - Electron outcoupling scheme by Adams and Materlik (1996)
 - Regenerative amplifier using LCLS beam (Huang and Ruth, 2006)

Main Issues for ERL-based XFEL-O

Electron beams of suitable characteristics

Production and recirculation of high quality beams

■ FEL dynamics

- Sufficient initial gain
- Coupling of spontaneous emission to coherent mode
- Beam degradation consistent with recirculation path

High reflectivity optical cavity

- Crystals in backscattering configuration
- Focusing elements
- Outcoupling schemes

Cornell 5 GeV ERL Parameter scaled to 7 GeV APS II: G. Hoffstaetter, FLS 2006 Workshop, DESY

	APS Now	High Flux	Ultrashort Pulse		
Average Current (mA)	100	100	25 1		
Repetition rate (MHz)	0.3 ~ 352	1300	1300	1	
Bunch charge (pC)	0.3 ~ 60	0.077	19 (60)**	1	
Emittance (nm)	3.1 x 0.025	0.022 x 0.022	0.006 x 0.006	0.37 x 0.37	
Rms bunch length (ps)	20 ~ 70	2	2	0.1	
Rms momentum spread (%)	0.1	0.02	0.02	0.3	

With gun optimization, the charge can be increased to 60 pC

I.V. Bazarov & C.K. Sinclair, PRSTAB,8, 0342002 (2005)

FEL Beam Dynamics

Gain calculations

- Analytic formula for low signal gain including diffraction and electron beam profile
- Steady state GENISIS simulation for general intra-cavity power to determine saturation power

Time-dependent oscillator simulation by GENO

- Extend OPC by adding mirror bandwidth (Reiche)
- Necessary to establish the growth from spontaneous emission

Reduce the CPU time by

- Modeling a short window (25 fs)
- Tracking a single frequency component for radiation wavefront since other components are outside the crystal bandpass
- About 2 hr for one pass

Saturation: As circulating power increases the gain drops and reach steady state when gain=loss

E=7GeV, λ=1Å
Q=19 pC (Ip=3.8A), N_u=3000
Mirror reflectivity=90%
Saturation power=19 MW

E=7GeV, λ=1Å Q=40 pC (Ip=8 A), N_u=3000 Mirror reflectivity=80% Saturation power=21MW

Saturation in about 100-200 passes

Examples of Steady State Calculation

$$\sigma_{\tau}$$
=2 ps, σ_{γ} =1.37, ϵ_{xn} =0.82 10⁻⁷m
$$Z_{R}$$
=β*=10~12 m

λ(Å)	E(GeV)	Q (pC)	K	λ _υ (cm)	N _U	G ₀ (%)	R _T (%)	P _{sat} (MW)
1	7	19	1.414	1.88	3000	28	90	19
1	7	60	1.414	1.88	3000	~100	83	21
0.84	7.55	19	1.414	1.88	3000	28	90	20
0.84	10	19	2	2.2	2800	45	83	18

Results of GENO Simulation

- Constant electron focusing (β_{ave} =5.6 m)
 - Steady state gain is ~40% for low charge case (19 pC)
 - Exponential growth did not occur-- probably coupling of spontaneous emission to coherent mode is too small- - - - -

- No focusing, beam waist at the undulator center (β^* ~10 m) and mode Rayleigh length ~ β^*
 - Smaller gain, but a good coupling to the coherent mode
 - High charge case (60 pC): exponential gain and saturation observed
 - With 19 pC, growth is not strong—factor 6 over spontaneous after 40 passes (as of 6 AM this morning!)
 - Further optimization of electron and mode parameters will be necessary

Desired Optics for the X-FEL Oscillator (Y. Shvyd'ko)

- Reflectivity $R_1 \times R_2 > 90-80\%$
 - "Pure" diamond or sapphire
- Transmissivity T ~5%
 - Thin crystal, accompanying diffraction in near BS
- Focusing elements
 - Curving crystal can affect reflectivity even for R~50m
 - Grazing incidence mirrors or compound reflective lenses
- Heat loading is OK to 1 MHz, may be up to 100Mz
 - Cooling AL2O3 to 40 degree

Options for XFEL-O Cavities (Y. Shvyd'ko)

 $Al_2O_3xAl_2O_3$ @14.3 keV R_T=0.87, G_{sat}=15%, T=3%

CxCxmirror @12.4 keV RT=0.91, G_{sat}=10%, T=4%

 $Al_2O_3xAl_2O_3xSiO_2$ @ 14.4125 keV RT=0.82, G_{sat} =22 %, T=4%

Energy Acceptance of the Recirculation-Pass for APS-ERL

- Genesis simulation shows that the rms energy spead increases from 0.02% to 0.05% after the FEL interaction
- The ERL return pass can accommodate 0.05% energy spread

Photon Performance of XFEL-O

- Wavelength: 1-Å or shorter, ε_{γ} =12.4 keV or higher
- **■** Full transverse coherence
- Full temporal coherence in 1 ps duration
 - $\triangle v/v=0.3 \ 10^{-6}$; $h\triangle v=4 \ meV$
- 10⁹ photons (~ 1 μJ) /pulse
 - Peak spectral brightness~LCLS
- Rep rate: 1 MHz or higher, limited by crystal heat load, 100MHz?
 - Average brightness 10²⁷ (→10²⁹) #photons/(mm-mr)²(0.1%BW)
 - 10³-10⁵ times higher than ERL based undulator source

Science Drivers for XFEL-O

- Inelastic x-ray scattering (IXS) and nuclear resonant scattering (NRS) are flux limited experiments! Need more spectral flux in a meV bandwidth!
- Undulators at storage rings generate radiation with ≈ 100-200 eV bandwidth. Only ≈ 10⁻⁵ is used, the rest is filtered out by meV-monochromators.

Presently @ APS: $\approx 5 \times 10^9$ photons/s/meV (14.4 keV)

- XFEL-O is a perfect x-ray source for:
 - high-energy-resolution spectroscopy (meV IXS, neV NRS, etc.), and
 - imaging requiring large coherent volumes.
 - Expected with XFEL-O ≈ 10^{15} photons/s/meV (14.4 keV) with 10^7 Hz repetition rate.

Concluding Remarks

- XFEL-O appears to be feasible with beams expected from future ERLs
- It is a promising and powerful addition to ERL capabilities
- Application areas: nuclear resonance scattering, coherent imaging, inelastic scattering,...
- This is initial exploration with much room for further optimization.

