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Abstract 
The equation for two-particle correlation function in 

FEL was derived recently to provide a new way of noise 
calculations in SASE FELs [1]. In this paper this equation 
is solved numerically for the simplest case of narrow 
electron beam. Time independent solution with saturation 
is obtained. It is compared with the results of quasilinear 
theory and results of previous SASE linewidth estimates. 

INTRODUCTION 
High gain FELs operated in SASE mode are considered 

now as one of the most perspective high-brightness 
radiation source in the x-ray region. Therefore it is very 
important to know the radiation properties of such FELs. 
Parameters of radiation in a single shot are determined by 
the shot noise in the beam current which has stochastic 
nature. Because of that these parameters fluctuate from 
shot to shot and they can not be determined without exact 
solution of the particle motion and Maxwell equations. 
On the other hand the parameters averaged over many 
shots can be found by the methods of statistical 
mechanics. 

The statistical approach has been treated by many 
authors but usually it was limited to the linear case when 
one can introduce the Green function and the averaging 
becomes straightforward [2,3]. Some authors considered 
the averaged results of simulations obtained by 
macroparticle based codes [4]. But in this case it is not 
evident that artificially constructed initial distribution of 
macroparticles leads to correct results at saturation stage. 

The regular nonlinear approach to the start-up from 
noise has been proposed in [1]. It is based on the BBGKY 
set of equations which is truncated to two equations for 
single-particle distribution function and two-particle 
correlation function. In this paper we obtain the numerical 
solution of these equations for the simplest model of 
narrow beam comprised of charged disks with Gaussian 
transversal charge distribution. 

BASIC EQUATIONS 
In the case of the charged disks model the equations (4-

5) of [1] for the single-particle distribution function and 
two-particle correlation function have the following form: 
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where ( ) { } ( )iiiiii ddzidzi Δ+=Δ=Δ= 21,),,( ν , iΔ .- 

relative electron energy deviation, iz  - electron 

longitudinal coordinate in undulator, N - number of 

electrons in the beam, ( ) ( )1,2 2
|| =−= cztγθ  - “time” 

variable and ||γ  - relativistic factor of electron 

longitudinal motion. The longitudinal interaction force 
( )2,1Φ  can be determined from eq. (6) of [1]. In the 

considered model it should be averaged over transversal 
distribution: 
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here σ  is r.m.s transversal beam size, er  - classical 

electron radius, 2
021 σα wkk= - small dimensionless 

parameter which characterizes the beam “thickness”, 0k .- 

radiation wave number and wk  - undulator wave number. 

We assume that undulator has constant deflection 
parameter K and helical symmetry. 

From this point we shell consider stationary case, 
therefore the time derivative in Eq. (1-2) can be omitted 
and N  should be replaced by the number of electrons per 
unit of length. In this case the single-particle distribution 
function has to be renormalized the following way: 
 

( ) 1, 1111 =ΔΔ∫ dzFν    

 
To eliminate the fast oscillating terms it is convenient 

to introduce the slow varying complex amplitude G
~

 of 
the correlation function: 
 

( ) ( ) ( )( )21
22112211 ,;,

~
Re2,;, zziezzGzzG −ΔΔ=ΔΔ  (4) 

 

Here we have replaced iwzk  by dimensionless variable 

iz . Substituting (4) into (1-2) and neglecting fast 

oscillating terms we obtain the final system of equations: 
___________________________________________  
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where function ( )221 ,; ΔzzI  is determined as 
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of the longitudinal force (3) , 
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Pierce parameter ( I - beam peak current, emcI A
3=  - 

Alfven current), 
0λN - the number of electrons in the 

beam on one wavelength. 
The solution of eq. (5-6) can be obtained by numerical 

methods which are described in the next section. It seems 
natural that initial electron distributions in different shots 
are not correlated. Then the boundary conditions for eq. 

(5-6) are 0|
~

|
~

00 21
== == zz GG  , ( )1001

| Δ== FF z , where 

( )10 ΔF  is the electron energy distribution at the entrance 

to undulator. It is sufficient to find the solution only for 

21 zz ≥  as the symmetry of the correlation function 

imposes additional condition 
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It should be noted that one-time two-particle correlation 

function allows to find only the radiation peak power 
averaged over different shots.  The averaged spectral 
distribution is determined by two-time two-particle 
correlation function which obeys the following equation:  
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In the stationary case ( ) ( )212212 ;2,1,2;,1 θθθθ −= GG  

and this equation has to be solved with the initial 
condition ( ) ( )2,1|;2,1

21212 GG =− =θθθθ . 

The beam current correlation function at given 
longitudinal coordinate in undulator z can be found from 
the following expression:  
 

( ) ( ) ( ) 21211122121 ,,;,,,, ΔΔΔΔ= ∫ ddzzGAtzItzI θθννδδ  

 
where A  is some constant and ( )ztii −= 2

||2γθ . It can be 

shown that if we neglect the dependence of longitudinal 

“velocities” iν  on energy coordinates iΔ  then  

 
( ) ( ) ( )

( ) ( ) 21221121

2121

,
2

1
;,

2

1

,,,

ΔΔ⎟
⎠

⎞
⎜
⎝

⎛ Δ−+Δ−−=

=−≡

∫ ddzzGA

zJtzItzI

θθθθ

θθδδ
 

 
The current spectral density is determined by the 

expression: 
 

( ) ( ) ( ) ττ τν
ν dezJzJ i +

∫= 1,     

NUMERICAL SOLUTION 
The system of equations (5-6) has been solved 

numerically using finite difference method. The 
difference scheme was obtained by replacing of partial 
derivatives by centered differences. The integral in Eq. (7) 
was approximated using method of central rectangles. The 
numerical algorithm is illustrated in Fig. 1. Indexes 
( )mn,  correspond to energy coordinates, index ( )j  is 

related to the coordinate 2z . 

The letters “M”, “O” and “P” denote three layers in 1z  

direction. To find the solution at the layer “P” one has to 
know the values of correlation function at two preceding 
layers. Therefore it is required to keep in the computer 
memory only these three layers. The solution above the 
line 21 zz =  is obtained from the symmetry condition (8). 

 
Figure 1. The finite difference scheme. 
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SIMULATION RESULTS 
In this section we present an example of simulation 

results obtained for the following set of parameters: 
Pierce parameter 01.0=ρ , beam energy spread 

ρσ 2.0=e , ρα 50= . 
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Figure 2. Dependence of the microbunching square on the 

longitudinal coordinate in undulator. gL  - the gain length 

at the linear stage. 
 
At Fig. 2 one can see the dependence of the beam 

microbunching on the longitudinal coordinate in

 
undulator. The amplitude gain length at linear stage 

wgL λ40≈ , where wλ  is undulator period. Therefore 

the Fresnel number gwLkα21  [1] is small and the narrow 

beam approximation is valid. The exponential growth 
starts at gLz 4≈  and comes to saturation at gLz 10≈ . 

Fig. 3 shows variation of  the r.m.s. spectral bandwidth 
along undulator. The final value of the bandwidth is in 
very good agreement with the asymptotic formula (21) 
obtained in [1]. 
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Figure 3. Dependence of the r.m.s. spectral bandwidth on 
the longitudinal coordinate in undulator. gN  - number of 

undulator periods per one gain length. 
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Figure 4. The spectral and energy distributions at different
 

longitudinal positions: a) – start of the exponential
 

growth, b) – start of saturation process, c) – saturation 
stage. 

 
 

The saturation process is illustrated in Fig. 4. At the
 

beginning of the exponential growth the spectrum is wide
 

and the energy distribution function is unperturbed (a). 
Before saturation the bandwidth reduces rapidly and the 
energy spread starts growing (b). At the saturation stage

 

the energy distribution becomes wide and amplification 
stops (c). The saturation mechanism is very similar to the

 

quasilinear one [5]. 

Fig. 5 shows distribution of the correlation function
 

amplitude integrated over energy in the ( )21, zz  plane. 
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Figure 5. Two coordinate distribution of the correlation 
function amplitude integrated over energy. 

CONCLUSION 
In this paper we developed the description for 

saturation in SASE FEL based on rigorous statistical 
approach. By our knowledge it is the only existing 
method to consider nonlinear stage of noise amplification 

in FEL now. For the simplest case of narrow electron 
beam we first obtained non-trivial solution for the 
correlation function nonlinear behaviour. 

From the other hand, the SASE FEL is an explicit 
illustration of fundamental ideas of statistical physics. 
Indeed, the averaging over the abstract assembly of 
macroscopically equivalent systems is simply the 
averaging over different electron bunches, which pass 
through undulator. It is also the clear example of 
ergodicity, as the averaging over bunches is a kind of 
time-averaging. 
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