A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Teichert, J.

Paper Title Page
MOPPH036 First Experiences with the FIR-FEL at ELBE 97
 
  • P. Michel, W. Seidel, G. Staats, J. Teichert, R. Wuensch, U. Lehnert
    FZD, Dresden
 
  We show the design and the parameters of operation of the long-wavelength (U100) FEL of ELBE. First lasing has been shown in August, 2006. Since then, the laser has undergone thorough commissioning and is available for user experiments since fall, 2006. Besides in-house users the IR beam is available to external users in the FELBE (FEL@ELBE) program witch is a part of the integrated activity on synchrotron and free electron laser science in the EU. At the beginning of 2007 lasing in the full designed wavelength range from 20μm to 200μm was demonstrated. The laser power typically reaches several W in CW operation but drops for very long wavelengths depending on the size of the used outcoupling hole. However, there exists a serious problem with small gaps in the providable wavelength spectrum. We attribute this behaviour to the transmission characteristics of the overmoded partial waveguide used from the undulator entrance to the first mirror.  
WEPPH046 A Superconducting RF Photo-Injector for Operation at the ELBE Linear Accelerator 449
 
  • A. Arnold, H. Buettig, D. Janssen, M. Justus, U. Lehnert, P. Michel, K. Moeller, P. Murcek, Ch. Schneider, R. Schurig, F. Staufenbiel, R. Xiang, J. Teichert
    FZD, Dresden
  • T. Kamps
    BESSY GmbH, Berlin
  • G. Klemz, I. Will
    MBI, Berlin
  • W.-D. Lehmann
    IfE, Dresden
  • A. Matheisen, B. van der Horst
    DESY, Hamburg
  • J. Stephan
    IKST, Drsden
  • V. Volkov
    BINP SB RAS, Novosibirsk
  • P. vom Stein
    ACCEL, Bergisch Gladbach
 
  For the ELBE superconducting linear accelerator at Forschungszentrum Dresden-Rossendorf (FZD) a radiofrequency photoelectron injector with a superconducting cavity (SRF gun) is under development. The SRF gun combines the excellent beam quality which can be delivered by RF photoinjectors with the possibility of continuous wave operation. The superconducting niobium cavity of the injector consists of 3½ cells and contains a Cs2Te photocathode which is normal-conducting and cooled by liquid nitrogen. The RF frequency of the cavity is 1.3 GHz. The final electron energy will be about 9.5 MeV and the average electron current will be 1 mA. In the past years the SRF photo injector has been designed and fabricated. Several critical subsystems have been tested. For the cavity, the results of the RF measurements will be shown. An UV driver laser system has been developed which fulfils the different requirements (77 pC at 13 MHz, 1 nC at 500 kHz) for the future operation at ELBE. A photo cathode preparation system was developed and installed. The equipment is now in operation and the first series of Cs2Te photo cathodes have been produced.