|
Although the in-vacuum undulators (IVUs) have many advantages over out-vacuum undulators, magnetic measurement after assembling vacuum components, i.e., final verification of magnetic performance, is not an easy task. In addition, remeasurement after installation in the accelerator beamline is not trivial. The situation is more severe for cryogenic permanent magnet undulators (CPMUs), an extension of IVUs. We have recently developed a magnetic measurement system to measure the field inside the vacuum chamber. With optical laser beams introduced into the vacuum chamber, the alignment of the Hall probe positions is dynamically carried out, which ensures a high stability and accuracy of the measurement. This system is called SAFALI for Self-Aligned Field Analyzer with Laser Instrumentation. The SAFALI system has been applied to field measurement of two different undulators. One is an IVU installed in Swiss Light Source in 2001 and had been operated for about 3 years. The other is a CPMU prototype to demonstrate the principle of CPMU. The purpose of the measurement of the former is to investigate the radiation damage during operation, while that of the latter is to check the performance variation according to the temperature change of magnets. In the conference, details of the SAFALI system are given together with the results of the field measurements.
|
|