A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Schlenk, R.

Paper Title Page
MOPPH072 The IR-Beam Transport System from the ELBE-FELs to the User Labs 171
 
  • M. Justus, K.-W. Leege, D. Proehl, R. Schlenk, A. Winter, D. Wohlfarth, R. Wuensch, W. Seidel
    FZD, Dresden
 
  In the Forschungszentrum Dresden-Rossendorf, two free-electron lasers (FELs) have been put into operation. They produce laser light in the medium and the far infrared wavelength range (4-200 microns). The IR light is transported to several laboratories in the same building and to the adjacent building of the High Magnetic Field Laboratory (HLD) as well. The latter is up to 70m away from the FELs. Constructional peculiarities, the large wavelength range (a factor of 50 between the shortest and the longest wavelengths), the high average power in cw regime, and the beam property requirements of the users pose a challenge to the beam line design. The transport system includes vacuum pipes, plane and toroidal gold-covered copper mirrors, exit windows, and diagnostic elements. The designed transport system produces a beam waist at selected spots in each laboratory representing an image of the outcoupling hole. Spot size and position are independent of the wavelength. In the HLD the beam is fed into a circulare waveguide, guiding the radiation to the sample inside of a cryostat. To ensure the desired beam properties, the transport system has been analyzed by means of various ray and wave optical models.