A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Oppelt, A.

Paper Title Page
MOPPH055 Measurements of the Projected Normalized Transverse Emittance at PITZ 138
 
  • G. Asova, K. Boyanov, I. Tsakov
    INRNE, Sofia
  • J. W. Baehr, C. H. Boulware, H.-J. Grabosch, L. H. Hakobyan, M. Hänel, S. Khodyachykh, S. A. Korepanov, M. Krasilnikov, S. Lederer, A. Oppelt, B. Petrosyan, S. Riemann, S. Rimjaem, J. Roensch, A. Shapovalov, F. Stephan, L. Staykov
    DESY Zeuthen, Zeuthen
  • K. Floettmann
    DESY, Hamburg
  • R. Richter
    BESSY GmbH, Berlin
 
  The main objective of the Photo Injector Test facility at DESY in Zeuthen (PITZ) is the production of electron beams with minumum transverse emittance at 1 nC bunch charge. PITZ consists of a photo cathode RF gun, solenoids for the compensation of space charge induced emittance growth and a booster cavity. In order to study the emittance evolution along the beam line three Emittance Measurement SYstems (EMSY's) were installed downstream of the booster cavity. In a first operation periode in October 2006 the emittance was measured for moderate gun gradients of about 40 MV/m. A new gun cavity is presently installed at PITZ and conditioning up to a gradient of 60 MV/m is ongoing. In this work we present recent results from measurements of the normalized projected transverse emittance of the electron beam. The emittance is measured using the so called single slit technique. Data are presented for different gun and booster gradients, solenoid strengths and initial beam size at the cathode.  
TUBAU04 Towards a Low Emittance X-ray FEL at PSI 224
 
  • A. Adelmann, A. Anghel, R. J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, F. Le Pimpec, S. C. Leemann, K. B. Li, P. Ming, B. S.C. Oswald, M. Paraliev, M. Pedrozzi, J.-Y. Raguin, L. Rivkin, T. Schietinger, V. Schlott, L. Schulz, A. Streun, F. Stulle, D. Vermeulen, F. Q. Wei, A. F. Wrulich, A. Oppelt
    PSI, Villigen
 
  The Paul Scherrer Institute (PSI) in Switzerland aims at building a compact and cost-effective X-ray FEL facility for the wavelength range 0.1 - 10 nm. Based on the generation of very low emittance beams, it consists of a low-emittance electron gun (LEG) followed by high-gradient acceleration, and advanced accelerator technology for preserving the initial low emittance during further acceleration and bunch compression. In order to demonstrate the feasibility of the concept and the emittance preservation, a 250 MeV test facility will be built. This machine has been designed to be used as injector for the X-ray FEL at a later date. The accelerator design of the 250 MeV linac will be presented in the paper together with the status of the LEG and high gradient acceleration.  
slides icon Slides  
WEBAU02 Recent Experimental Results from PITZ  
 
  • G. Asova, K. Boyanov
    INRNE, Sofia
  • J. W. Baehr, C. H. Boulware, H.-J. Grabosch, M. Hänel, S. Khodyachykh, S. A. Korepanov, M. Krasilnikov, S. Lederer, A. Oppelt, B. Petrosyan, S. Riemann, S. Rimjaem, T. A. Scholz, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Floettmann
    DESY, Hamburg
  • L. H. Hakobyan
    YerPhI, Yerevan
  • R. Richter
    BESSY GmbH, Berlin
  • J. Roensch
    Uni HH, Hamburg
  • A. Shapovalov
    MEPhI, Moscow
 
  The Photo Injector Test facility at DESY in Zeuthen (PITZ) was built to develop and optimize electron sources for superconducting linac driven, high power, short wavelength FELs. A 1.5 cell L-band gun cavity characterized at PITZ has provided beam for FLASH since 2004. A spare RF gun has been characterized at PITZ and delivered to Hamburg as well. To meet the stringent requirements on beam quality for the European XFEL, a substantial upgrade program is ongoing at PITZ. In a first operation period during October 2006, projected normalized transverse emittances in both transverse planes between 1.2 and 1.5 mm mrad for a bunch charge of 1 nC were measured. These results are in good agreement with simulations. A major step towards even lower emittance is the increase of the electric field at the photo cathode from 40 MV/m to 60 MV/m. With the upgrades ongoing now, simulations predict a projected normalized transverse emittance of 1.2 mm mrad and better for 1 nC bunch charge in the running period scheduled for summer 2007. This contribution will give an overview of the experimental results obtained at PITZ in the operation periods of October 2006 and summer 2007 (e.g. transverse and longitudinal phase space measurements, dark current and cathode properties). The main steps of the further upgrade program at PITZ will be mentioned as well.  
slides icon Slides  
WEPPH013 Status and Perspectives of the PITZ Facility Upgrade 354
 
  • G. Asova, J. W. Baehr, C. H. Boulware, H.-J. Grabosch, L. H. Hakobyan, M. Hänel, S. Khodyachykh, S. A. Korepanov, M. Krasilnikov, S. Lederer, A. Oppelt, B. Petrosyan, S. Riemann, T. A. Scholz, L. Staykov, F. Stephan, S. Rimjaem
    DESY Zeuthen, Zeuthen
  • K. Boyanov
    INRNE, Sofia
  • K. Floettmann
    DESY, Hamburg
  • R. Richter
    BESSY GmbH, Berlin
  • J. Roensch
    Uni HH, Hamburg
  • K. Rosbach
    Humboldt University Berlin, Institut für Physik, Berlin
  • A. Shapovalov
    MEPhI, Moscow
 
  The Photo Injector Test facility at DESY in Zeuthen (PITZ) has been established to develop and optimize electron sources that cover requirements of FEL facilities such as FLASH and the European XFEL. A major upgrade of the facility is ongoing in steps, in parallel to the commissioning of the extended setup and first experiments. The new setup towards the final design mainly includes a photo cathode RF gun, a post acceleration booster cavity and several diagnostic systems. In order to fulfil the high brightness electron source characterization, the diagnostic systems will consist of three emittance measurement systems, two high-energy dispersive arms, an RF deflecting cavity and a longitudinal phase space tomography module as well as bunch length diagnostics. In this paper, results of the commissioning of the new RF gun, which has been installed and conditioned at PITZ in spring and summer of 2007, the current PITZ status and details of the future facility upgrade will be presented.  
WEPPH049 Test of a Wiresanner in the Diagnostic Section of PITZ 461
 
  • G. Asova, J. W. Baehr, J. H. Han, S. Khodyachykh, S. A. Korepanov, M. Krasilnikov, V. Miltchev, A. Oppelt, B. Petrosyan, M. Sachwitz, L. Staykov, F. Stephan, H.-J. Grabosch
    DESY Zeuthen, Zeuthen
 
  The Photo Injector Test facility at Zeuthen (PITZ) has been established to optimize electron beams of high brilliance needed for short wavelength FELs. In a first step one wire scanner station, developed and used in the undulator section of FLASH at DESY, was tested in the diagnostic section of PITZ. Measurements of the beam-profile and the beam-position were performed to test the useability of such type of wire scanner at PITZ. The obtained results are presented and discussed. The test has shown that wire scanners of this type can be used successfully as complementary measurement device for beam-profile measurements at PITZ. In the final state of extension of PITZ , two wire scanners are foreseen as standard diagnostic tools.