A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kulipanov, G. N.

Paper Title Page
MOPPH030 Terahertz Imaging and Radioscopy with 160x120 Microbolometer 90 fps Camera 83
 
  • A. L. Aseev, M. A. Dem'yanenko, D. G. Esaev, I. V. Marchishin
    ISP, Novosibirsk
  • G. N. Kulipanov, N. Vinokurov, B. A. Knyazev
    BINP SB RAS, Novosibirsk
 
  Uncooled micromolometer camera for IR and THz high-speed imaging has been developed. The 160x120 focal plane array consists of resistive vanadium oxide elements on a silicon nitride bridge. The element size is 48x48 micron at 51 micron array period. We describe device fabrication process and focal plane array operational characteristics. The camera was used as a recorder in quasi-optical systems with Novosibirsk terahertz free electron laser as a radiation source. Radioscopy of the objects, which are of interest for biology and security applications, has been demonstrated. The recording rate up to 90 frames per second has been obtained.  
MOPPH033 Diffraction Optical Elements and Optical Systems with a High Power Monochromatic Terahertz Source 93
 
  • H. J. Cha, Y. U. Jeong
    KAERI, Daejon
  • V. S. Cherkassky, L. A. Merzhievsky, S. A. Zhigach
    NSU, Novosibirsk
  • A. V. Fanova, B. A. Knyazev, G. N. Kulipanov, N. Vinokurov, I. A. Polskikh
    BINP SB RAS, Novosibirsk
 
  We have developed reflective diffraction optical elements (DOE) for focusing radiation of terahertz free electron lasers (FEL). Metal-dielectric Fresnel zone plates and metallic kinoform "lenses" were fabricated and tested using FEL radiation. A microbolometer camera (see the paper by Esaev et al. at this conference) sensitive to THz radiation had been applied for recording both terahertz beam caustic and terahertz images. Diffraction efficiency of a kinoform lens appears to be about unity. Quality of images obtained with the kinoform lens was studied. The lens was used as a key element for a Toepler optical system, which were used for studying condense matter non-uniformities and deformations. The experiments were performed at Novosibirsk and KAERI FELs.  
MOPPH044 Status of Novosibirsk ERL and FEL  
 
  • N. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, G. N. Kulipanov, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, N. Vinokurov
    BINP SB RAS, Novosibirsk
 
  The Novosibirsk terahertz free electron laser is based on the energy recovery linac (ERL) with room-temperature radiofrequency system. Some features of the ERL are discussed. The results of emittance measurements and electron optics tests are presented. The first stage of Novosibirsk high power free electron laser (FEL) was commissioned in 2003. Now the FEL provides electromagnetic radiation in the wavelength range 110 - 230 micron. The average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation. The second stage of the ERL, which has four orbits, is under construction.  
THAAU05 Light Pulse Structure, Spectrum and Coherency of Novosibirsk Terahertz Free Electron Laser  
 
  • E. I. Kolobanov, V. V. Kotenkov, G. N. Kulipanov, A. N. Matveenko, L. E. Medvedev, V. K. Ovchar, K. S. Palagin, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, N. Vinokurov, V. V. Kubarev
    BINP SB RAS, Novosibirsk
 
  Light pulse structure and spectrum of Novosibirsk free electron laser were studied by direct independent methods. Super fast Schottky diode was used in time domain experiments. Method of vacuum Fourier spectroscopy was applied for spectral investigations. Observation of spectral stability of each light pulse was made by grating monochromator with Schottky diode. Influence of cogerency on harmonic powers is also shown.  
slides icon Slides